
Design & Engineering Report

 Course: Computer Information Technology

 Code: TEL3M, ICS3U, ICS4U

 Author: Josh Dolgin

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 iii

TABLE OF CONTENTS

PROJECT 1. VOLTAGE DIVIDERS ... 1
Reference ... 1
Theory .. 1
Procedure ... 1
Media ... 2
Conclusion .. 2

PROJECT 2. ANALOG OSCILLATOR ... 5
Reference ... 5
Theory .. 5
Procedure ... 5
Purpose .. 6
Media ... 6
Conclusion .. 7

PROJECT 3. THE 3D CHRISTMAS TREE ... 9
Reference ... 9
Purpose .. 9
Procedure ... 10
Media ... 10
Conclusion .. 11

PROJECT 4. A COUNTING CIRCUIT .. 13
THEORY .. 13
A. ANALOG INPUT .. 14

Purpose .. 14
B. NAND GATE OSCILLATOR (4011) .. 15

Reference ... 15
Purpose .. 15

C. DECADE COUNTER (4017) ... 15
Reference ... 15

D. DECIMAL COUNTING BINARY UP/DOWN COUNTER (4510) .. 16
Reference ... 16
Purpose .. 16

E. BINARY COUNTING DECIMAL COUNTER (4511)... 17
Reference ... 17
Purpose .. 17

F. SEVEN-SEGMENT DISPLAY .. 17
Reference ... 17
Purpose .. 17

MEDIA .. 18
CONCLUSION ... 18

PROJECT 5. LED CYLINDER ... 19

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 iv

Theory .. 19
Procedure ... 19
Media ... 20
Conclusion .. 21

ICS3U .. 23

PROJECT 6. TRAFFIC LIGHT ASSEMBLY AND TESTING........... 25
Reference ... 25
Purpose .. 25
Procedure ... 25
Code ... 26
Media ... 27
Reflection ... 27

PROJECT 7. ASCII & BUTTONS .. 29
Reference ... 29
Theory .. 29
Media ... 29
Code ... 30
Procedure ... 31
Reflection ... 32

PROJECT 8. SHIFT REGISTER – BARGRAPH 33
Reference ... 33
Purpose .. 33
Procedure ... 33
Media ... 34
Code ... 35
Reflection ... 35

PROJECT 9. MATRIXMADEEZ ... 37
Reference ... 37
Purpose .. 37
Procedure ... 37
Media ... 38
Code ... 39
Reflection ... 40

PROJECT 10. DESIGN SESSIONS.. 41
Reference ... 41

EAGLE ... 41
Purpose .. 41
Procedure ... 41
Reflection ... 42
Media ... 42

VIACAD ... 43
Purpose .. 43
Procedure ... 44

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 v

Media ... 44
Reflection ... 45

PROJECT 11. SMART TRASH CAN .. 47
Reference ... 47
Purpose .. 47
Code ... 48
CAD .. 49
Media ... 50
Procedure ... 51
Reflection ... 52

PROJECT 12. THE ACES ROVER PROJECT 53
Reference ... 53
Purpose .. 53
Procedure ... 53

Design ... 54
Hardware .. 55
Software ... 55

Code ... 56
Media ... 57
Reflection ... 58

PROJECT 13. LEGACY PCB/APPLIANCE: ATTINY ARDUINO ... 59
Reference ... 59
Inspiration .. 59
Procedure ... 59
Procedure Phase 2 ... 60
Reflection ... 61
Reflection Phase 2 .. 61
Media ... 62

PROJECT 14. ACES CHOICE: MATRIX EQUALIZER STICK 63
Reference ... 63
Purpose .. 63
Procedure ... 64
Reflection ... 64
Code ... 65
Media ... 66

PROJECT 15. THE BI-WHEELED ROVER .. 67
Reference ... 67
Purpose .. 67
Procedure ... 68

Hardware .. 68
Software ... 69
CAD ... 70

Code ... 71
Media ... 74
Reflection ... 75

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 vi

ICS4U .. 77

PROJECT 16. THE GB MACHINE .. 79
Reference ... 79
Purpose .. 79
Procedure ... 79
Media ... 80
Reflection ... 80

PROJECT 17. 3D PRINTING AND FORMING 81
Reference ... 81
Purpose .. 81
Prusa MK3s MMU2s .. 82

Procedure ... 82
Media.. 82

Mayku Formbox ... 83
Procedure ... 83
Media.. 84

Reflection ... 84

PROJECT 18. CHARLIESTICK ... 85
PART 1 ... 85

Reference ... 85
Purpose... 85
Procedure ... 86
Media.. 86
Code.. 87
Reflection ... 88

PROJECT 19. CHUMP ... 89
Part 1: Code.. 89

Reference ... 89
Code.. 89
Explanation ... 89

Part 2: Clock ... 89
Reference ... 89
Purpose... 90

Monostable ... 90
Astable ... 90
Bistable .. 91
Clock Logic ... 91

Procedure ... 92
Reflection ... 93
Media.. 94

Part 3: Arithmetic and Logic Unit .. 95
Reference ... 95
Purpose... 95

Arithmetic .. 96
Logic ... 96

Procedure ... 96
Reflection ... 97
Media.. 97

Part 4: EEPROM ... 98
Reference ... 98

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 vii

Purpose... 98
Procedure ... 98
Code.. 99
Reflection ... 101
Media.. 101

Part 5: Program Counter .. 102
Reference ... 102
Purpose... 102
Procedure ... 103
Media.. 103
Reflection ... 104

Part 6: Processor .. 104
Reference ... 104
Purpose... 104

Multiplexor .. 105
ALU .. 105
RAM ... 105
Address register... 106
Program/Control EEPROM .. 106
Accumulator .. 106
Program Counter ... 106

Procedure ... 107
Reflection ... 108
Media.. 109

PROJECT 20. DOLGIN DEVELOPMENT PLATFORM 111
Part 1: Assembly .. 111

Reference ... 111
Purpose... 111
Procedure ... 111
Media.. 112
Reflection ... 112

Part 2: Testing .. 113
Reference ... 113
Purpose... 113
Reflection ... 113
Procedure ... 114
Code.. 114
Media.. 116

PROJECT 21. ADC SHIELD .. 117
Reference ... 117
Purpose .. 117
Procedure ... 117
Code ... 118
Reflection ... 119
Media ... 120

PROJECT 22. INTERSECTION SHIELD .. 121
Purpose .. 121
Theory .. 121

4511 seven-segment driver .. 121
Intersection shield .. 122

Procedure ... 122
Reference ... 123

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 viii

Code ... 124
Reflection ... 125
Media ... 125

PROJECT 23. THE SMD DESKTOP RTC-EQUALIZER 127
Purpose .. 127
Theory .. 127

MSGEQ7 ... 127
DS1307 RTC .. 128
MAX7219 .. 129

Procedure ... 130
CAD ... 130

Fusion 360 ... 130
EAGLE... 131

Code.. 131
Reference ... 133
Reflection ... 133
Media ... 134

PROJECT 24. BICOLOR BYTE ... 135
Reference ... 135
Purpose .. 135
Code ... 136
Procedure ... 137
Media ... 138
Reflection ... 138

PROJECT 25. POV ON THE ADC SHIELD 139
Reference ... 139
Purpose .. 139
Code ... 140
Procedure ... 142
Reflection ... 142
Media ... 143

PROJECT 26. SCROLLING DER PAGE ... 145
Reference ... 145
Purpose .. 145
Code ... 145
Procedure ... 148

Software ... 148
Hardware .. 148

Media ... 149
Reflection ... 150

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 1

Project 1. Voltage Dividers
Reference
http://darcy.rsgc.on.ca/ACES/TEL3M/1718/TasksFall.html - VoltageDividers

Theory
The theory behind this project is to use voltage dividers and variable resistors to change the flow

of electrons through a bi-color LED, therefor changing its color. Firstly, what is a voltage

divider? According to Kirchhoff’s voltage law, the sum of the current into a component is equal

to the sum of the current out of that component, and the sum of the voltage through a closed loop

is equal to zero. As well as Ohm’s Law, I = V/R or Current = Voltage/Resistance. Using these

two separate laws, voltage dividers can be established as two or more resistors in series that each

take half of the remaining voltage. The first crucial component of the circuit is the breadboard, a

breadboard is an easy way to lay out a circuit without soldering the parts together. By using

vertically connected rows and easy to access power supply, it is a crucial piece of equipment for

prototyping circuits. Next, the variable resistor, also known as a potentiometer. The variable

resistor is a resistor of a certain value that can be changed simply by turning the dial on top.

Next, the bi-color LED, the way that a bi-color LED is different from a regular LED is that it

allows current to flow in both directions as opposed to regular diodes, in one direction the light is

green and the other direction the light turns red. After learning about these separate components,

it is time to talk about how they all come together in the circuit. The theory behind this circuit is

that with the turn of the potentiometer, current will have two paths to go through, choosing the

path which offers less resistance to the flow of electrons. Voltage dividers prove useful because

they split the current in half when the potentiometer dial is at half way, so the LED appeared off

because the voltage is split directly in half, but as the dial was turned, the resistance changed, and

there for the bi-color LED would light up one of two colors.

Procedure
After learning about all the separate parts as well

as how voltage dividers work, it is time to put

them all together into a circuit and prototype a

breadboard. however, there is some trial and error

in figuring out what parts go where. Firstly, the

circuit diagram must be altered in order to add the

potentiometer to the circuit. Since the circuit

diagram was created using a switch instead of a

potentiometer it was difficult to tell which leg to

input the current into and where the output would lead. However, after further examination of the

circuit diagram it became clear that the junction with the switch formed three separate directions,

just like how a potentiometer has three separate legs. After discovering this junction, it became

very simple to see how a potentiometer could be added to the circuit, as well as how turning the

dial on the potentiometer would cause a change in the current flow, to which of the two paths

offered less resistance. What is the difference between a variable and fixed resistor? Firstly, the

variable resistor, also known as a potentiometer, is a resistor of a certain value that can be

changed simply by turning the dial on top. This is possible because the potentiometer has three

separate legs, as opposed to the fixed resistors with two legs and a fixed resistance. As the dial is

turned, the amount of voltage from A leg to B leg is changed and the rest of the voltage is sent to

C leg, this offers a certain amount of resistance to the two separate paths connected to both C leg

Parts Table

Component Quantity

9v battery 1

Potentiometer 1

470 resistor 2

220 resistor 1

Bi- color LED 1

Breadboard 1

http://darcy.rsgc.on.ca/ACES/TEL3M/1718/TasksFall.html#VoltageDividers

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 2

and B leg, dividing the voltage input to A leg. On the other hand, a fixed resistor is a resistor that

had a certain  rating, and cannot be changed once being input to the circuit. It is easy to tell the

total resistance on a resistor by reading the colored band code, referred to on page 74 in the book.

Both of these resistors are crucial for the development of this circuit because the fixed resistors

acted as voltage dividers to prevent the bi-color LED from being blown as well as the variable

resistor which changes the path offering the least resistance for the current to flow through, and

which leg of the LED the current travels through, therefor changing the color of the LED.

Finally, the circuit diagram must be represented and tested out on a breadboard. This can be done

by connecting the 9v battery to the positive and negative terminals on the breadboard. The circuit

diagram shows which components are connected to the negative and positive terminals of the

battery and which of the potentiometers legs connect to positive and negative respectively. After

that it is a simple matter of completing the circuit by adding components between the positive

and negative leads already mentioned. Once the prototyping is finished, with the twist of the dial

on top of the potentiometer, the bi-color LED should change colors.

Media
https://www.youtube.com/watch?v=Bljqfeg6064(use subtitles for explanation)

Conclusion
Over the course of the project I encountered many problems but after I focused and completed

what I was working towards and through these challenges, I became better at many things. I

became better at reading circuit diagrams and incorporating separate components, presenting the

circuit diagram on a breadboard, as well as how to format an Engineering Report on Word and

many useful tricks. At the beginning of this course, my only prior knowledge of reading circuit

diagrams was last year during my science project, and even then, we weren’t using the complex

symbols seen on the circuit diagrams we look at in class. Through the first several classes I found

myself wondering about the importance of learning these complex symbols, but now I realize

truly how important they were. After taking the time to study diagrams I can draw them myself, I

can find which parts go where as well as incorporating new components to the diagram already

given. It would be difficult to build a circuit simply from a diagram, and that’s why we use

https://www.youtube.com/watch?v=Bljqfeg6064

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 3

breadboards to prototype circuits. It’s easy to take components out and try a new order, which

makes it very simple to constantly attempt new circuits without losing parts. After using all of

these new skills I have acquired, it was time to explain them in writing, also known as an

Engineering Report (ER). ER’s will store all my past and future projects, so it is important to

format them in a legible and organized manner, although this is my first report, I found that my

skills in Microsoft Word have increased dramatically. In conclusion, this course is a great way to

merge my creative and scientific mind, and know that nothing is impossible as long as you work

hard through trial and error to create something, it is truly a great experience.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 4

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 5

Project 2. Analog Oscillator

Reference
http://darcy.rsgc.on.ca/ACES/TEL3M/1718/TasksFall.html - AnalogOscillator

Theory
The theory of this project is to use capacitors and

transistors to cause LED’s to flash back and forth. The

circuit has two unstable states, changing back and forth.

But how does this work? Capacitors usually consist of

two electric plates, with a dielectric material or liquid

between the plates. When voltage is applied, an electric

field is created. One plate will collect positive charge

and negative on the other. At first, the capacitors offer

little to no resistance, but as they charge at 63% of the

remaining space, then 63% of what is left, as the charge

increases, the resistance increases as well, letting less

electrons in at each time interval. Transistors are 3

pronged components internally consisting of diodes and resistors. These 3 prongs are the base,

collector and emitter pins. Similar to the two at rest states of push buttons, PBNO meaning push

button normally open, meaning in its at rest state, no current can pass through the button, and

PBNC or push button normally closed. The transistors used in this project are PBNO, meaning

they only allow current to flow from collector to emitter when current is applied to the base pin.

After dry fitting the circuit, it’s time to dry fit then solder the components to a PCB board. This

is useful because soldering is a very difficult skill to master, and you can’t apply to much heat

the internals of your parts.

Procedure
After learning about these separate parts, it is time

to prototype, and finally solder the finished board.

The first step is to take out all the components

from the toolbox. The schematic could be found

on page 8 in the book, the schematic can also be

found on the project page listed above. Connect

the 9v power supply to the breadboard. Begin by

connecting the four separate resistors to the

positive terminal and the capacitors in the polarity

shown by the schematic.

Connect the negative terminal of each capacitor to

the base of the opposing transistor. Connect the LED’s to the positive terminal of the capacitor,

then to ground. Connect the positive terminal of the capacitor to the

collector of the transistor and the emitter to ground. Test your circuit by connecting the power to

the breadboard. The rate of flashing of the LED’s can be changed by altering the resistance, or the

rating of farads on the capacitor. Once the breadboard works,it is time to retrieve the PCB board

for dry fit and soldering. Once studying the board and components,it is clear which components

fit where and how to fit the parts in. Once all the parts are put into the PCB board, make sure that

Parts table

Component Quantity

100F Capacitor 2

2N3904 Transistors 2

10mm LED 2

1K fixed resistor 2

10K fixed resistor 2

9v battery 1

Slide switch 1

Printed circuit board 1

http://darcy.rsgc.on.ca/ACES/TEL3M/1718/TasksFall.html#AnalogOscillator

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 6

the parts are connected to the metal pads at the bottom of the hole, add the battery jack and power,

and see if the circuit works, if not it can easily be troubleshot by looking at the example on the

website. If it still doesn’t work, use the DMM to test each of the parts induvially. Once the dry fit

is complete and approved, the parts must be soldered. The parts that run less of a risk of being

damaged due to heat should be soldered first, this includes the resistors, the switch, the battery

adaptor, and the LED prongs. To ensure that the parts fit tightly to the PCB board, the parts can be

held by hand while soldering or, can be held tightly using the reverse tweezers. The helping hands

tools can hold the entire board stable while soldering. Using the side cutters, snip the excess wire

off the bottom the PCB board. After soldering, use the DMM again to assure that the parts are still

in working order. Finally, return the more fragile parts to the PCB board, making sure the

transistors and capacitors are facing in the right direction. Remember, direct heat to these

components for 4s or more run the risk of damaging the parts. Once the soldering is complete, use

a magnifying glass to assure that all the joints are strong. Add the LED’s to the prongs, in the right

polarity. Connect your power, and the Analog oscillator should work. Remember to use the DMM

to recheck all the parts and a magnifying glass to test the joints.

Purpose
The purpose of this project to teach students how to: both use transistors and capacitors, and how

to solder components to a permanent PCB as opposed to keeping them on a breadboard.

Capacitors and transistors are key components to circuit board, and it is important to know how

they work. As well being able to solder components is a crucial skill in computer engineering,

and fitting components to PCB boards.

Media
https://www.youtube.com/watch?v=rOSOMul5F-Q

https://www.youtube.com/watch?v=rOSOMul5F-Q

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 7

Conclusion
Over the course of this project, I encountered many problems, but I became better at many

important techniques used in the course. I became better at reading circuit diagrams and

presenting them on a breadboard, and I became better at soldering components to a PCB.

However, I did not become better at these techniques simply by practice, I had to learn from my

mistakes. Firstly, when adding my components to a breadboard, I did not know the orientation in

which to place the transistors, as not only do they have 3 legs, each of the legs serves a different

purpose. This was easily solved however, as we learned in class, the orientation of the legs, when

read from left to right, and facing the flat side are EBC or Enjoy Basic Computers. The

capacitors, have the same orientation of the LED’s.

Finally, I encountered a problem while soldering components to the PCB. Once I finished

soldering, and added power, my circuit was still not working, I then went through the labor-

intensive process of checking each of the components using a DMM. But, the single thing that

was wrong with my circuit board was a faulty joint on the LED female header pin. This caused

current not to flow into the LED, therefor it didn’t flash. Overall, throughout this project I

learned how to further read circuit boards, I learned about new components, and finally, I learned

to test all my solder joints when soldering to PCB’s.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 8

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 9

Project 3. The 3D Christmas Tree

Reference
http://darcy.rsgc.on.ca/ACES/TEL3M/1718/TasksFall.html - Tree

Purpose
The purpose of this project is to use two separate analog oscillator circuits to drive LED’s on

Printed Circuit Boards created to mimic the shape of a Christmas tree. There are 4 sets of 4

LED’s being driven by two Analog oscillators. An Analog oscillator uses a series of components

to cause LED’s to flash back and forth. The first component used in an analog oscillator is two

BC547 transistor’s (3904’s work as well), the transistor only allows current to pass through when

current is applied to the base pin. The transistors function in the circuit is to allow current to flow

though the LED’s when current is applied to the base pin from the discharge of capacitors.

Capacitors usually consist of 2 plates with an electrolytic liquid between them, they build up and

save charge as current is applied to them, and eventually discharge the current in a single burst.

Resistors also play a large role in the analog oscillator circuit, resistance is used to reduce current

as stated in ohms law current=voltage/resistance. By limiting current, the rate at which the

capacitors charge is also changed. The final component in the project are 3mm LED’s (light

emitting diodes) they are polarized devices that emit energy as light when the right amount of

current is applied. Another purpose of the Christmas tree is to teach how to become better at

solder as well as debugging circuits, as some of the copper pads are close together and difficult

to solder without connecting, and since most of the components are polarized it is easy to

accidentally switch the direction. For the 3D Christmas Tree project, it is extremely helpful to be

patient when dry fitting and soldering components.

http://darcy.rsgc.on.ca/ACES/TEL3M/1718/TasksFall.html#Tree

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 10

Procedure
Once receiving the kit with all the components,

separate the resistors, transistors, LED’s, springs,

PCB’s and jumper cables. Firstly, solder the

components that are the easiest and have the least

chance of being compromised by the heat, such as

the resistors. Since the resistors are non-polarized,

the orientation on the PCB does not matter. The

correct resistors can be put in place my checking

the circuit diagram and matching the resistor

number to the number printed on the PCB. When

soldering, use the reverse tweezers to keep the

components tight to the board, and prevent the

component from moving while soldering. Once

all the resistors are soldered in place, find all the capacitors and put them in place. Capacitors are

polarized, remember that the anode is the positive leg. When soldering the capacitors, leave

some room between the capacitor and PCB so that they can be bent down to rest on the board.

The next component to be soldered to the PCB is the transistors, it is crucial not to apply to much

heat to the transistors as they very easy to be compromised, it is best to solder one leg of each

transistor at a time as to not apply all the heat at once. Next, solder the LED’s into their places on

the PCB’s, remember that LED’s are polarized as well, in the same orientation as the capacitors.

Also, assure that the LED’s can be bent to the notches along the sides of the PCB. The final step

of the 3D Christmas tree is to solder the springs and jumper wires, bend the springs into

designated holes and solder along the copper padding, making sure that they are a straight as

possible. Slide the first PCB onto the second and connect J1-J1 and J2-J2 via jumper cables.

Connect the springs to a 9V battery and watch the LED’s flicker in a seemingly random pattern.

If the tree does not work, check the solder connections and if that fails, check the components

with a DMM.

Media
https://www.youtube.com/watch?v=h3dKRV4eAAA

Parts Table

Component Quantity

BC547 Transistor 4

10 F Capacitor 4

3mm LED 16

Spring 2

1k  Resistor 4

100k  Resistor 2

82k  Resistor 2

Jumper wire 2

PCB 2

9v Battery 1

https://www.youtube.com/watch?v=h3dKRV4eAAA

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 11

Conclusion
In conclusion, this project was very fun to make and is very practical, as well as how it relates to

the previous project which is an analog oscillator. The project was enjoyable to build because it

was not that much more difficult than last project, it was just on a larger scale than the single

analog oscillator that was created in the previous project. The project is practical because it is a

holiday bush that I created right around the holidays, it can be used as a gift, or as decoration.

This project very clearly is related to the previous project because it uses two separate analog

oscillators, using 8 LED’s per oscillator, however all the LED’s aren’t along one side, they are

mixed throughout the PCB. For those reasons, I believe that this was a great project for the grade

10 hardware class.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 12

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 13

Project 4. A Counting Circuit

Theory
The theory behind this project is to use a series of

specialized IC’s and components to drive a seven-

segment display and allow it to count 0-9. The

first part of this circuit is to use a 4011 NAND

chip and a PBNO to demonstrate NAND gates

and how inputs work. Firstly, the input to this

entire circuit, the push button. The push button

(PBNO) allows current to flow when the button is

pressed and cuts off flow when released. With the

addition of a capacitor and resistor, the LED will

stay on momentarily after the button is pressed.

To increase the time the LED remains on,

remember time = capacitance/resistance. After the

analog input is complete, it is time to create a

NAND gate oscillator, using the addition of a

0.1F capacitor and some extra wires, the LED

will oscillate once the button is pressed. This

oscillation however, can be used as a clock pulse

to operate the next chip, a clock pulse means that

there is an output of a certain duration followed by no output of a certain duration, this output

versus no input is always a constant. The 4017 specialized IC known as a divide by 10 chip and

uses a clock pulse and sends each pulse to the next sequential output, the amount of outputs can

be limited by connecting the last output to the clock reset pin. Once the divide by 10 pin is

connected to the clock input of the following 4516 chip, which takes the clock pulse and uses 4

output pins which act as a binary counter and decoder, the counting goes to 15 and resets back to

0. The final IC used in this circuit is a 4511 chip which takes 4 inputs and displays them on a

seven-segment display. Since the 4516 IC has 4 outputs of binary numbers, and the 4511 has 4

inputs. The 4511 will take the binary counting input and show it on the seven-segment display.

However, the seven-segment can only display the numbers from 0-9 so there will be a break as

the numbers range from 10-16 and then reset to 0. By using an analog input and a series of

specialized IC’s, it is possible to create a counting circuit.

Parts table

Component Quantity

Breadboard 1

DC battery connector 1

Wire kit 1

0.1F capacitor 1

100F capacitor 1

220  resistor 1

470  resistor 7

Seven-segment display 1

4011 IC 1

4017 IC 1

4510 IC 1

4511 IC 1

9V battery 1

PBNO 1

LED 7

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 14

A. Analog Input
Purpose

The purpose of developing this first circuit is

to demonstrate a NAND gate and using a pull

up resistor configuration to allow current to

flow until the PBNO is pressed. Once the push

button is pressed, the electrons take the path of

least resistance and flow there instead of

through the NAND gate. At rest, power flows

through both of the inputs to the NAND gate

and therefore the LED is off and remains off

until the button is pressed. The input of a

PBNO only allows one input to the NAND

gate circuit. Since the push button is difficult

to hold it is time to increase the time the LED

stays on. The addition of a capacitor and resistor allow current to flow back out of the capacitor

once the button is released keeping the LED on.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 15

B. NAND Gate Oscillator (4011)

Reference http://mail.rsgc.in.ca//~cdarcy/Datasheets/CD4011.pdf

Purpose

The 4011 chip, also known as the NAND gate

chip is the primary and most significant chip in

this circuit. NAND refers to a logic gate with

two inputs, the gate has an output that is

normally at logic 1 and only goes low to logic

0 when all its inputs are at logic level 1. Using

a 0.1F capacitor that is constantly filling and

releasing, the output of the circuit causes the

LED to flash at a constant rate. The input of

this circuit (as previously discussed) is a

PBNO which charges a capacitor that later

releases into the resistor capacitor

configuration. The analog input (pressing the PBNO) of this circuit then later feeds it through a

specialized, digital IC. Each of the CMOS specialized IC’s have a certain pin configuration

shown in the pin out diagram above. To activate the chip, connect pin 7 to the negative rail of a

breadboard and pin 14 to the positive rail. The chip has 4 separate NAND gates, with two inputs

and 1 output each, 2 gates per each side of the chip. Using a combination of these gates as well

as capacitors and resistors, once the PBNO is pressed, the LED will oscillate. The oscillation also

shows that a clock pulse has effectively been generated. A clock signal is a signal which

oscillates between a high and a low state and acts like a metronome and operates at a constant.

Also found in this circuit, are two RC (resistor-capacitor) configurations label RC1 and RC2.

The purpose of RC1 is to calculate the time that the circuit will continue to run after the PBNO is

released and this can be calculated using the formula time (s) = Resistance () / Capacitance (F).

The second RC configuration is to determine the rate at which the circuit oscillates, or how fast

the LED will flash.

C. Decade counter (4017)

Reference http://mail.rsgc.in.ca//~cdarcy/Datasheets/CD4017.pdf

Purpose

The third part of the circuit, is to input the

clock pulse into a specialized IC, the 4017

chip, or also now as the divide by 10 chip. The

4017 IC takes a clock input and on each

output, the IC sends the current to the next

sequential output. After connecting the correct

pins to positive and negative rails respectively,

connect the clock output of the analog

oscillator to the clock input of the 4017.

Connect each of the next sequential outputs to

10 separate LED’s. After the 10 outputs, 2

connections to power and ground, and finally

the clock input, you are left with 3 pins.

http://mail.rsgc.on.ca/~cdarcy/Datasheets/CD4011BC.pdf
http://mail.rsgc.on.ca/~cdarcy/Datasheets/CD4017.pdf

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 16

Firstly, is the divide by 10 output, which outputs current for the last 5 outputs of the chip, this pin

also works as a slow clock pulse. The next two pins are disable clock input and reset input. It is

important to pay attention to pin configurations and be sure to ground pins that you do not want

to be used, if the pin is neither grounded nor connected to VSS then it sits in a ghost state with

some unpredictable outcomes. The reset input resets the outputs once it reaches 9, and if not

grounded then the outputs will stop at 9 and remain stationary. The disable clock input disables

the clock input and leaves the output stationary.

D. Decimal Counting Binary Up/Down Counter (4510)

Reference http://mail.rsgc.in.ca//~cdarcy/Datasheets/CD4510.pdf

Purpose

The 4510 BCD specialized IC, which stands for

binary coded decimal, is a specialized IC that

takes a

clock pulse and transfers it into Binary numbers

through 4 separate outputs labeled A, B, C, D.

The binary decoded into base 10 numbers can be

found in the table to the right. Taking the output

of the divide by 10 pin on the 4017 and

connecting it to pin 15, connect pin 16 and 0 to

negative and positive rails respectively. Connect

the carry in clock and preset rails to ground. If the

circuit is counting too slowly then instead of

connecting the 4510 to the divide by 10 pin of the

4017 then connect it to the original clock pulse

from the NAND gate oscillator.

Binary Base 10

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

http://mail.rsgc.on.ca/~cdarcy/Datasheets/CD4510.pdf

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 17

E. Binary Counting Decimal Counter (4511)

Reference http://mail.rsgc.in.ca//~cdarcy/Datasheets/CD4511.pdf

Purpose

The 4511 specialized IC is a binary decoder

which turns a binary input and outputs it to

display on a seven-segment display. There are

four input pins on the 4511-labeled input A-D

respectively. These can easily be connected to

the outputs labeled A-D on the 4510 IC. After

receiving the binary counting output from the

4510 the 4511 processes the input and outputs

it through seven separate pins, therefor driving

a seven-segment display. After factoring out

the output, input, voltage, and grounding pins,

there are three pins left; store, blank input and

display test. Display test will turn on all of the

segments on the seven-segment display to

demonstrate it is working well. Blank input pin

will stop the number where it is an blank any input being sent to the four input pins. Finally store

(also known as latch enable) when the enable input is on, the signal propagates directly through

the circuit, from the input to the output.

F. Seven-Segment Display

Reference http://mail.rsgc.in.ca//~cdarcy/Datasheets/7SegmentDisplay.pdf

Purpose

A seven-segment display is uses 7 LED’s to

light up 7 separate rectangular displays, using

the orientation of the bars, it is possible to

display the numbers 0-9. As well to the

separate segments there is a decimal point as

well. The segment we used was a common

anode meaning that the center pin on both

sides, when connected to the positive allow the

segments to turn on when the respective pins

are grounded. Seven-segment displays are

available in both common anode and common

cathode. There are seven output pins on the

4511-labeled a-g can be easily connected to

pins a-g on the seven-segment display.

However, each pin requires a separate resistor

because they are each separate LED’s and if

only one has a resistor attached, it would be dimmer than the rest of the segments.

http://mail.rsgc.on.ca/~cdarcy/Datasheets/CD4511.pdf
http://mail.rsgc.on.ca/~cdarcy/Datasheets/7SegmentDisplay.pdf

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 18

Media

https://www.youtube.com/watch?v=_aNvdUCtt6Q

Conclusion

The counting circuit project is the final project of the year (except for independent Study project)

and was quite difficult to build and understand. This project gave me better knowledge of inputs

and outputs, through using an analog input and predicting the outcome or output of the circuit. I

became better at conserving space on a breadboard and wiring more carefully, knowing that this

would be a large circuit I needed to keep my wiring tight and conserve as much space as

possible. I gained knowledge of four new specialized IC’s and became better at reading and

understanding pin out diagrams. The final and most important skill I have acquired during this

project is time management, both time management in building and completing the circuits

through each step, and time management in writing my ER’s. Especially with a report as long as

this one it is important to not procrastinate and to finish the work in advance. In conclusion, this

project has given me experience in many important aspects of engineering.

https://www.youtube.com/watch?v=_aNvdUCtt6Q

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 19

Project 5. LED Cylinder

Theory
The theory behind this project is to use both a 555 timer IC and a 4017 divide by 10 IC to create

a rotating effect on a LED cylinder. The first component in the project is a perma-proto half

breadboard, this component uses a breadboard style arrangement of holes, just like a breadboard.

The difference is that the perma-proto board uses large holes in order to be solder friendly and a

more permanent way to store and build products. The first part of this circuit uses a 555 timer to

create a clock pulse, a clock pulse is a signal that oscillates between a high and a low state and is

utilized similar to a metronome. The length between these pulses can be determined on a 555

timer by changing capacitance between pins 1 and 2 or changing resistance between both pins 8

and 7, as well as 7 to 6. If the resistor between pins 7 and 6 is replaced with a potentiometer, then

the speed of the pulse can be changed by altering the resistance on the potentiometer. The clock

pulse then feeds into the 4017 divide by 10 specialized IC. Which takes in the clock pulse and

converts it into 11 separate outputs, 10 sequential outputs, and one divide by 10 output. The 10

sequential outputs are labeled 0-9, and with each pulse entering the 4017 the next sequential

output will output VSS. The LED cylinder is of comprised 3 layers of 6 LED’s each layer with a

corresponding common cathode for the entire layer, each column of LED’s are connected to a

common anode. Therefor single LED’s can be controlled by grounding a certain layer and

applying VSS to a column. After applying the first 6 outputs of the 4017 IC to 6 corresponding

columns of LED’s the cylinder will dance using the certain outputs designated.

Procedure
Once acquiring all the components required lay

them out in an organized format. Add the 555

timer and 4017 IC to a breadboard 4 rows apart.

Connect the IC’s to power and ground rails

respectively. Connect pin 8 to pin 7 of the 555

timer using the 220 fixed resistor. Connect pin 7

of the 555 timer to pin 6 using the A and C pins of

the 100k potentiometer. Connect pin 4 of the

555 timer to pin 8. Connect pin 2 of the 555 timer

to pin 6. Connect pin 1 of the 555 timer to pin 2

with the 1F capacitor, the positive leg connected

to pin 2 and negative leg to pin 1. Connect the

output (pin 3) of the 555 timer to pin 14 of the

4017 divide by 10 counter. Connect outputs 0-5 of

the 4017 IC to 6 separate LED’s. Connect output

6 of the 4017 to the reset pin (pin 15). Connect

the battery and debug any problems found in the breadboard prototype. Solder the chip seats to

the perma proto board in the same orientation as the breadboard prototype. Copy the breadboard

wiring on the 555 timer. Once done wiring the 555 timer connect a LED to the output to make

sure that the 555 timer is creating a clock pulse, the LED should oscillate. Once it is confirmed

that a clock pulse is created, connect the output of the 555 timer to pin 14 of the 4017 IC and

repeat the breadboard wiring as well, except for the outputs. Draw a circle on the block of wood

Parts List

Component Quantity

Square LED’s 18

Perma-Proto half

breadboard

1

555 Timer 1

4017 IC 1

Chip seat 2

Wires 28

DC battery adapter 1

1F capacitor 1

100k potentiometer 1

220 fized resistor 2

9V battery 1

Block of wood 1

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 20

and mark 6 spots on the circle, equidistant from each other. Using a 7/16” drill bit, drill holes

where the marks on the circle are. Place a LED in each of the holes with the cathodes bent to the

center of the circle and the anodes bent outwards. Solder all the cathodes to each other, and

remove the layer from the template. Repeat for as many layers as required. Once all layers are

complete, stack the layers using 2” of foam between each layer to keep balanced. Bend the

anodes of the LED’s to create 6 vertical columns. Solder each of the columns and carefully

remove the foam spacers. Connect all of the common cathodes for each layer to one central wire.

Connect the central wire to the negative rail of the perma proto breadboard and connect each of

the sequential outputs (0-5) to the respective columns on the cylinder.

Media

https://youtu.be/9gKfnp_fJFw

https://youtu.be/9gKfnp_fJFw

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 21

Conclusion
In conclusion, I encountered many problems throughout the project and had some successes. My

first challenge was in choosing one of my multiple ideas for the independent study project (ISP),

as throughout the year I found many interests. The LED cylinder idea came into my mind while

watching a LED cube instructable, I liked the idea of a 3D controllable object because it

appealed to both my liking of structures and structural engineering as well as controlling it using

specialized IC’s and other basic electronic components, as opposed to a micro controller or

programmable device. The next problem was encountered in designing the cylinder, at that point

I already knew I wanted to control my structure using a 4017 IC using the clock pulse from a 555

timer. Next was to decide the structure to build, either a cylinder or a rectangular prism were my

two good ideas, as well as how high my structure would be built. I did not encounter any

problems in breadboard prototyping my circuit or acquiring all my components. The next

problem was in deciding which LED’s would be used in the cylinder. 3mm and 10mm LED’s

did not fit it the template I made, so when I tried using them, the layers could not stack properly,

and with the 5mm LED’s the cylinder was uneven and LED’s became angled. Multiple times

throughout the build process I forgot that the LED’s were wired in parallel not series and only

required a maximum of 3V, and accidentally applied 9V to test them. Eventually I built my final

LED cylinder design, using block LED’s 3 layers high. I also had multiple successes while

building this project, I succeeded in designing and prototyping the circuit on a breadboard with

tight wiring and minimal space taken up. My soldering has improved drastically as illustrated by

the good connections and tight wiring on the perma proto half breadboard. I succeeded in

fulfilling the description of my product in my ISP proposal, with a robust and clean design.

Overall, I think this project was a great way to demonstrate the skills and knowledge in this half

course, as well as pushing myself slightly out of my comfort zone design wise.

ICS3U
AVR Foundations

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 25

Project 6. Traffic Light Assembly and Testing
Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html - TrafficLightAssembly

Purpose
The purpose of this project is to learn the basics of coding and using Arduino, as well as helping

regain our critical hardware thinking skills after a long summer. The project is to drive 3 LED’s

using only 3 pins on the Arduino. Which is no easy task because there are 2 legs per LED,

making 6 pins total. Figuring out the arrangement of the pins requires some critical thinking

skills, because in some orientations multiple LED’s would come on at the same time. Although

the hardware aspect of this project was not as intensive or thought provoking as previous

projects, the real challenge was in the code behind it. The Arduino Uno uses a DIP ATmega328P

MCU and outputs it to 28 pins, consisting of mostly power, ground, analog input, and digital

output pins. The P in ATMega328P stands for pico power, meaning the chip can run on

anywhere from 1.8-5 volts. The Arduino Uno uses a code similar to C, and is powered by the

USB slot of a computer, or a 5v input. The purpose for learning how to code an Arduino it is

close to C code, a code that all engineers need to know. As well, learning how to program the

digital input and output pins opens up a lot of projects and ideas that were difficult to control

simply using hardware. Such as creating a square wave and being able to change the frequency

and duty cycle without having to use a series of resistor capacitor circuits connected to a 555

timer.

Procedure
After receiving the bag with the stripboard and 3

pronged male header pin, solder the header pin to

the stripboard with the curved part facing away

from the board. Think as to the orientation of the

LED’s on the stripboard and how to use the 3 pins

most effectively. Test the LED’s on a LED tester

to make sure they all function, Arrange the LED’s

on a breadboard and change the orientation of

them until they are in an position that will work.

This orientation is to have the anode of the green

LED on the far right pin and its cathode on the

center pin. Then solder the anode of the amber LED to the center pin and the cathode to the left

pin. Finally, solder the anode of the red LED to the left pin and the cathode to the center pin.

Check to make sure all the solder connections are strong, and that the LED’s are flush against the

stripboard. Connect the right pin to digital pin 11, center pin to digital pin 12, and the left pin to

digital pin 13 on the Arduino board. The next step is to write the code. Open a new .ino file and

add the project title, author, date, status, and reference. Create 3 unsigned 8 bit integers to digital

pins 13, 12, 11, and name the green, amber, and red respectively. Create an unsigned 16 bit

integer for duration and make it 3000 milliseconds (3 seconds), this is how long the green and

red lights remain on for. In setup, set the pin mode for pin 11, 12, and 13 as output. Under loop,

write the green pin to high for a delay of 3000 milliseconds (duration), then set it back to low.

Then, write the amber pin to high for a duration of 1000 milliseconds (duration/3), and write it

back to low. Finally, write the red pin to high for a duration of 3000 milliseconds (duration), and

Parts List

Component Quantity

Stripboard 1

Light Emitting Diode

 (red, green, amber)

3

Arduino Uno 1

ATMega328P MCU 1

Breadboard 1

28 gauge wires 3

Three-pin right-angle header 1

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html#TrafficLightAssembly

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 26

write it back to low. Compile the code, and if it compiles completely upload it to the Arduino.

Connect the 3 male header pins to the female

header pins for digital pin 11, 12, and 13. The traffic light should be working, with the green

LED coming on for 3 seconds, then the amber LED for 1 second, and finally the red LED for 3

seconds.

Code
//Project : Traffic Light

//Author : Joshua Dolgin

//Date : 2018/09/18

//Status : Working

//Reference :http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html

uint8_t green = 13;

uint8_t amber = 12;

uint8_t red = 11;

/*uses an unsigned 8 bit integer to rename

each pin to the corresponding color*/

uint16_t duration = 3000;

/* uses an unsigned 16 bit integer to create

a variable called "duration that lasts 3000

milliseconds*/

void setup() {

 // put your setup code here, to run once:

pinMode(green, OUTPUT);

pinMode(amber, OUTPUT);

pinMode(red, OUTPUT);

/*sets the 3 pins to output*/

}

void loop() {

 // put your main code here, to run repeatedly:

 digitalWrite(green, HIGH);

 /*sets the pins output to high,

 effectively turning on the LED*/

 delay(duration);

 /*delays for the variable "duration"

 which was previously defined as 3000 milliseconds*/

 digitalWrite(green, LOW);

 /*sets the pins output to low,

effectively turning off the LED*/

 digitalWrite(amber, HIGH);

 delay(duration/3);

 digitalWrite(amber, LOW);

 digitalWrite(red, HIGH);

 delay(duration);

 digitalWrite(red, LOW);

}

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 27

Media
https://www.youtube.com/watch?v=FlCa0TD4fB0

Breadboard test

Soldered

Case test fit

Final product

Reflection
I really enjoyed the first engineering report of my grade 11 year. I learned how to write some

code in Arduino, I got to work on my critical thinking skills, and incorporate something I’m

really passionate about. Knowing how to code will help me in the future as an engineer and also

opens up a wide array of projects that would otherwise be hard with mechanical components. I

got to incorporate something that I’m passionate about, 3D design and printing. I spent a lot of

time in the DES over the last two weeks working on my ER and building the new Prusa i3 MK3,

and I enjoyed finding a way to combine both my school work and my passion. After 3 iterations

of the traffic light holder, I finally had a simple design that fit well, it uses 5 snap fit connections

to ensure that the lid stays tight to the case, and also requires no other mechanical components.

https://www.youtube.com/watch?v=FlCa0TD4fB0

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 28

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 29

Project 7. ASCII & Buttons

Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html - ASCII

Theory
The theory behind this project is to use the Serial Monitor on the Arduino Uno as well as its

digital input pins to create a tactile game to work on binary skills. The Serial Monitor on an

Arduino is essentially a tether between the computer and the ATMega328P UC. The Serial

Monitor operates in terms of Baud (bits per second), and can display characters and numbers.

This project consists of writing a code that generates a random ASCII character between the

integers 33 and 126 (ASCII characters ! to ~), and displaying the value as both an integer and an

ASCII character. The other part is to use the digital pins on the Arduino Uno to take 8 input

values, each switch is intended to represent a single bit ranging from 20-27. By using 8 slide

switches being pulled down to ground; each of the bits are read as a 0 (off), until switched to the

on (1) position. If the random integer value is correctly represented in binary across the 8 slide

switches, power is applied to the anode of a green LED, resulting in the LED turning on.

Media

https://www.youtube.com/watch?v=-PGrJ90f6KU

Initial pin wiring

Setting up the switches

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html#ASCII
https://www.youtube.com/watch?v=-PGrJ90f6KU

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 30

Breadboard wiring

Final product

Code

//Project : To generate a random ASCII character and have a participant represent

the character in binary.

//Author : Joshua Dolgin

//Date : 2018/10/9

//Status : Working

uint8_t bin1 = 2;/*Uses an unsigned 8 bit integer to rename pins 2-9 to their binary

values*/

uint8_t bin2 = 3;

uint8_t bin4 = 4;

uint8_t bin8 = 5;

uint8_t bin16 = 6;

uint8_t bin32 = 7;

uint8_t bin64 = 8;

uint8_t bin128 = 9;

uint8_t greenLED = 13;

uint8_t randomNumber; /*Creates an unsigned 8 bit integer named randomNumber*/

uint8_t binaryInput = 0;/*Creates an unsigned 8 bit integer equal to 0*/

void setup() {

 Serial.begin(9600);

 pinMode(greenLED, OUTPUT);/*Sets the LED pin to output*/

 while (!Serial); /*waiting for serial monitor to start*/

 randomSeed(analogRead(0));/*Uses the analog read on pin 0 to generate a

randomseed*/

 randomNumber = random(33, 127);/*Creates a random integer between 33 and 126*/

 Serial.println("Your Random ASCII character is");

 Serial.println((char) randomNumber);/*Prints the random integer as a character*/

 Serial.println("The integer value is");

 Serial.println(randomNumber); /*Prints it as an integer*/

}

void loop() {

 if (digitalRead(bin1))/*If there is power going to pin bin1, it adds 1 to the

binaryInput value*/

 binaryInput++;

 if (digitalRead(bin2))

 binaryInput += 2;

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 31

 if (digitalRead(bin4))

 binaryInput += 4;

 if (digitalRead(bin8))

 binaryInput += 8;

 if (digitalRead(bin16))

 binaryInput += 16;

 if (digitalRead(bin32))

 binaryInput += 32;

 if (digitalRead(bin64))

 binaryInput += 64;

 if (digitalRead(bin128))

 binaryInput += 128;

 if (binaryInput == randomNumber) { /*If the binaryInput is equal to randomNumber,

then it turns on the greenLED*/

 digitalWrite(greenLED, HIGH);

 } else

 {/*If binaryInput is not equal to randomNumber, the LED is turned off and

binaryInput is set back to 0*/

 digitalWrite(greenLED, LOW);

 binaryInput == 0;

 }

}

Procedure

Gather 8 slide switches and wire them to the

breadboard using pull down wires on one side,

and the other side connected to the power rail via

a 10K fixed resistor. Test the green LED to

make sure it functions properly and will emit light

when current is applied to it. Attach the anode of

the green LED to digital pin 13 on the Arduino

board and the cathode to the ground pin. Connect

switches 1-8 to pins 2-9 respectively. Connect the

5v pin on the Arduino to the power rail and the

ground pin to the ground rail. Connect the Arduino board to a computer; then open the Arduino

IDE and create a new sketch. Use 8 separate unsigned 8 bit integers to rename pins 2-9 to the

binary values they will represent. Create 2 different unsigned 8 bit integer to represent the

random number and the binary input value. Create a random integer between 33 and 127 using a

random seed based off of the analogRead from pin 0. Display the integer and its character value

in the Serial Monitor. Create separate “if” statements for each switch that adds the binary value

of the switch it represents to the binary input value. Create an “if” statement that turns on the

LED if the binary input value equals the random integer, and if it is not equal the LED will be

turned off and the value of binary input will be set to 0.

Parts Table

Component Quantity

Arduino UNO 1

ATMega328P 1

Wires 26

Slide Switch 8

Green LED 1

Breadboard 1

10K fixed resistor 8

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 32

Reflection

When I first read the email on the forum discussing ASCII and buttons, my mind immediately

starting running through ideas, both too advanced or not advanced enough to what we had been

learning in class. After a few more classes in discussing the randomSeed and digitalRead

functions; I narrowed my options to what I believed would be an entertaining project to work on

that was not beyond my skill level, but would further advance my understanding of the concepts

themselves. When I first wrote the code I was not thinking on how to reduce how much code was

used, but simply how to get it to function. After some time thinking, I thought of a different way

to write the code so it would apply to all the ASCII values rather than just some. Although the

code for this ER still exceeds what is recommended in terms of space, I believe I used what I

learned last year to the best of my ability and look forward to rewriting it using much less space

later this year.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 33

Project 8. Shift Register – Bargraph

Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Submissions.html

Purpose
The purpose of this project is to find an

unfamiliar sensor, and display its readings on a

bargraph using the SN74HC595 Shift Register

IC. There are many sensors available that

measure a variety of things, so finding one that

is interesting and different is not too difficult a

task. The most important component however,

is the 595 Shift Register. The 595 takes a clock

pulse as an input and internally maps it in 8

bits, each either being high or low, once power

is applied to the latch pin, the 8 values are

pushed through the 8 outputs (QA-QH) as

either high or low. Through using the shiftOut

command in the Arduino IDE, the Arduino

does all the dirty work and outputs the clock

pulse and the serial data to the necessary pins.

In this project, the 8 outputs of the 595 will be

connected to 8 of the 10 LED’s on a LED

bargraph. By taking an analog reading of the

output voltage the sensor creates, and mapping it to a value between 0 and 8. The data can be

sent to the 595 via 3 digital output pins, and later displayed on the bargraph.

Procedure
Gather the Sharp analog distance sensor and the

Arduino UNO. Connect the 5v and ground wires

of the distance sensor to their respective pins on

the Arduino. Connect the data output wire to one

of the analog input pins on the Arduino. Create a

new sketch in the Arduino IDE and include the

Sharp.IR library. Create an unsigned 8 bit

integer that reads the distance via the analog input

and prints the value on the Serial Monitor. Gather

all the components to be soldered to the PCB and

lay them out. Test the bargraph to make sure all

the LED’s are functioning properly. Solder each

of the components to the PCB, careful of their

orientation. Test each of the LED’s to make sure

they still function correctly. Open up the previous

code, and create an array in binary going from all 8 bits as zeros, to all 8 bits as ones. Using the

Parts Table

Component Quantity

Sharp GP2Y0A41SK0F

Analog Distance Sensor
1

Breadboard 1

SN74HC595 Shift Register IC 1

10 LED Bargraph 1

Tim Morlands PCB 1

5 pin right angle header 1

Connector Wires 5

Arduino UNO 1

ATMega328p 1

330 bussed SIP resistor 1

16 pin chip seat 1

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Submissions.html

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 34

Arduino map()function, map the distance read from between 4-30, to 0-8. Write a for loop

that loops itself the amount of times as the newly mapped value. Within the for loop write the

latch pin to low. When the for loop is finished write the latch pin to high, releasing the value

through the 8 output pins of the 595. Finally, write a shiftOut command that outputs the array

of binary values to the Shift Register.

Media
https://youtu.be/UJ3j36QZLZI

PCB test fit

Solder Connections

Case final design

Final Product

https://youtu.be/UJ3j36QZLZI

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 35

Code
//Project : To measure the distance using an IR motion sensor and displaying

//it on a bargraph using a 595 shift register IC

//Author : Joshua Dolgin

//Date : 2018/10/27

#include <SharpIR.h>//Includes the Sharp infared sensor library

#define model 430 //Defines the model of infared sensor

uint8_t latchPin = 9; //Pin connected to ST_CP (latch) of 74HC595

uint8_t clockPin = 10; //Pin connected to SH_CP (clock) of 74HC595

uint8_t dataPin = 8; //Pin connected to DS (data) of 74HC595

uint8_t infaredSensor = A0; //Uses 8 bit unsigned integer to rename pin A0

SharpIR SharpIR(infaredSensor, 430); //Measures the distance away from the sensor

//Creates an array of binary value

uint8_t digitMap[] = {0b00000001, 0b00000011, 0b00000111, 0b000001111,

0b00011111, 0b00111111, 0b01111111, 0b11111111};//

void setup() {

 Serial.begin(9600);

 while (!Serial);

 pinMode(dataPin, OUTPUT); //Sets dataPin to OUTPUT

 pinMode(clockPin, OUTPUT);//Sets clockPin to OUTPUT

 pinMode(latchPin, OUTPUT);//Sets latchPin to OUTPUT

}

void loop() {

 uint8_t dis = SharpIR.distance(); // this returns the distance to the object

you're measuring

 dis = constrain(dis, 4, 30); //Constrains the value between 4 and 30

 Serial.println("Average distance in centimetres");

 Serial.println(dis); //Prints the average distance of centimetres

 dis = map(dis, 4, 30, 1, 8);//Maps the distance to an integer from 0-8

 Serial.println("Amount of LED's");

 Serial.println(dis); //Prints the amount of LEDs that should be lit up

 for (uint8_t j = 0; j < dis; j++) {

 digitalWrite(latchPin, LOW); //ground latchPin and hold low for as long as you

are transmitting

 shiftOut(dataPin, clockPin, MSBFIRST, digitMap[j]);

 }

 digitalWrite(latchPin, HIGH);//Returns the latch pin to high

 delay(1000);

}

Reflection

When I first saw Project 3. Shift Register – Bargraph appear on the aces page, I immediately

began my research into the 595 shift register and its function. Although I understood the for

loops and arrays, I couldn’t seem to grasp what the 595 actually did. Once we started to use the

bargraph and 595 in class, I began to use the 595 in tandem with for loops and arrays in

order to further understand this integrated circuit. Then came the creative portion of this product.

It was time to choose a sensor to collect the data for my project: I tore through my toolbox

looking for something that would be different, but also interests me. I stumbled across the Sharp

IR motion sensor I scrapped after attempting to you use it last year with no success and decided

to give it a second try. Through further research of the motion sensor and its capabilities, I

discovered how to successfully integrate it into my circuit. I enjoyed watching how much I have

improved in both my software and hardware capabilities since last year and look forward to

improving even more.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 36

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 37

Project 9. MatrixMadeEZ
Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html - MatrixMadeEZ

Purpose
The purpose of this project is to use two

different 595 Shift Register IC’s to control

either the rows or columns of a 8x8 LED

matrix. A LED matrix uses 16 pins (8 Cathods

and 8 Anodes) to control 64 LED’s in a 8x8

square configuration. By controlling where

power and ground is applied to the 16 pins,

specific LED’s can be controlled to create

complex animations. By using two Shift

Registers, only 3 pins need to be tied to the

Arduino’s digital input pins rather than 16 in

order to control the matrix. The first Shift

Register is the SN74HC595, which takes in

data as a clock pulse an internally maps it to 8 bits. Once the latch pin is set to high, the 8 bits are

applied to the 8 outputs. The other Shift Register is a TPIC6C595 power logic 8-bit Shift

Register. The TPIC6C595 functions off of the same general concept of the SN74HC595, using

clock, data and latch pins; but, the TPIC6C595 can source much more voltage on a single pin

then the SN74HC595, allowing it to ground the current passing through multiple LED’s. The

final component being used is an Auto Gain Control electret condenser mic; the AGC electret

condenser mic takes in sound from 0 to 60 decibles, and outputs 2Vpp on a 1.25V bias. Through

using the shiftout command in the Arduino IDE, a complex animation can be displayed based

on the microphones output.

Procedure
Open the Arduino IDE and flash the blink sketch on to

the onboard Arduino using the sparkfun pocket

programmer and confirm that the LED attached to pin

19 of the ATMega328P-PU is blinking with a 50%

duty cycle at a 0.5HZ frequency. Gather the

MatrixMadeEZ PCB (designed by Hugo Reed) as well

as the 16 pin chip seats, 8x8 LED matrix, and the 6 pin

right angle male header. Solder each of the

components to the PCB, careful of their orientation.

Check all solder connections to make sure they coat

the copper pad, and no connections are bridged.

Connect the 5V and ground pin of both the ACG

electret condenser mic and MatrixMadeEZ PCB to the

power and ground rails on the breadboard. Connect the

output of the condenser mic to analog input pin A0 on

the Arduino board. Connect the data, clock, and latch

pins of the PCB to digital input pins 11, 10, and 9 on the Arduino respectively. Wire 2 PBNO’s with pull

up resistors and connect them to analog input pin A5 and A4. Open the Arduino IDE and create a new

Parts Table

Component Quantity

MatrixMadeEZ PCB 1

8x8 LED Matrix 1

16 pin chip seat 2

SN74HC595 Shift Register IC 1

TPIC6C595 Shift Register IC 1

6 pin right angle male header 1

AGC Electret Condenser Mic 1

Arduino Uno 1

ATMega328P-PU 1

Breadboard Connector wires 14

Push Button (normally open) 2

1K fixed resistor 2

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html#MatrixMadeEZ

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 38

sketch. Create 3 unsigned 8 bit integers to rename the digital input pins 11, 10, and 9 to data, clock, or

latch. Use 3 unsigned 8 bit integers to create 3 arrays, each representing a different animation. In the setup

function, declare the data, latch, and clock pins as OUTPUT. Create a sample window of 50ms to measure

the analogRead() on pin A0 and return an average value between 0 and 1023. Using the Arduino

map()function, map the value from 0 to 1023, to an integer between 1 and 5. Create a series of if-else

ladders that monitor the state of the PBNO’s and shift out the corresponding animation. Upload the sketch

to the Arduino board and confirm that everything is functioning correctly.

Media
https://www.youtube.com/watch?v=_cc5dbJQ5ZQ

MatrixMadeEZ PCB

Soldered Component

Breadboarded prototype

Final Product

https://www.youtube.com/watch?v=_cc5dbJQ5ZQ

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 39

Code
//Project : To create seperate animations on an LED matrix based off of the

//readings from an electret condensor mic.

//Author : Joshua Dolgin

//Date : 2018/11/17

//Status :Working

const int sampleTime = 50; // Sample window width in mS

uint16_t soundSample;

uint8_t data = 11; // DA: SER IN (Serial Input)

uint8_t clk = 10; // CK: SRCK (Shift Register cloCK)

uint8_t latch = 9; // LA: RCK (Register Clock)

uint8_t cornerData [] = {0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE, 0xFF};

// Creates an array to represent the first animation

uint8_t cornersData [] = {0x00, 0x81, 0xC3, 0xE7, 0xFF};

// Creates an array to represent the second animation

uint8_t boxData [] = {0x00, 0x18, 0x3C, 0x7E, 0xFF};

// Creates an array to represent the third animation

void setup() {

 pinMode(data, OUTPUT); //declares the data pin for OUTPUT

 pinMode(clk, OUTPUT); //declares the clock pin for OUTPUT

 pinMode(latch, OUTPUT);//declares the latch pin for OUTPUT

}

void loop() {

 // put your main code here, to run repeatedly:

 uint32_t startMillis = millis(); // Start of sample window

 uint16_t soundReading = 0; //Sets the soundLevel to 0

 uint16_t signalMaximum = 0; // establsihes a signal maximum

 uint16_t signalMinimum = 1024; // establishes a signal minimum

 while (millis() - startMillis < sampleTime) // collect data for 50 mS

 {

 soundSample = analogRead(A0);//Read volts on analog pin 0

 if (soundSample < 1024) //If sound sample < 1024

 {

 if (soundSample > signalMaximum) //If sound sample is > signal maximum

 {

 signalMaximum = soundSample; //signal maximum equals sample

 }

 else if (soundSample < signalMinimum) //if the sound level is greater than the

minimum value

 {

 signalMinimum = soundSample; //signal minimum equals sample

 }

 }

 }

 soundReading = signalMaximum - signalMinimum; // Max value- min value = soundLevel

 float voltReading = (soundReading * 5.0) / 1024; // Convert to volts

 voltReading = voltReading * 10; //Multiplies the volt reading by 10 in order to

use integer values.

 voltReading = constrain(voltReading, 2, 24);//Constrain volt values between 2 - 24

 if (!analogRead(A5)) { // If there is low voltage on A5

 voltReading = map(voltReading, 2, 24, 1, 5);//Map the volt reading to a value

between 1 and 5

 for (uint8_t j = 0; j < voltReading; j++) {

 digitalWrite(latch, LOW); // Writes the latch pin to low

 shiftOut(data, clk, LSBFIRST, cornersData[j]); // Shifts out the corners

animation

 shiftOut(data, clk, LSBFIRST, cornersData[j]);

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 40

 }

 digitalWrite(latch, HIGH); // Writes the latch pin to high

 } else {

 if (analogRead(A4)) { //If there is a low voltage on A4

 voltReading = map(voltReading, 2, 24, 1, 8);//Map the volt reading to a value

between 1 and 5

 for (uint8_t j = 0; j < voltReading; j++) {

 digitalWrite(latch, LOW);

 shiftOut(data, clk, LSBFIRST, cornerData[j]); // Shifts out the box

animation

 shiftOut(data, clk, LSBFIRST, cornerData[j]);

 }

 digitalWrite(latch, HIGH);// Writes the latch pin to high

 } else {

 voltReading = map(voltReading, 2, 24, 1, 5);;//Map the volt reading to a value

between 1 and 8

 for (uint8_t j = 0; j < voltReading; j++) {

 digitalWrite(latch, LOW);

 shiftOut(data, clk, LSBFIRST, boxData[j]); //Shifts the box animation

 shiftOut(data, clk, LSBFIRST, boxData[j]);

 }

 digitalWrite(latch, HIGH);// Writes the latch pin to high

 }

 }

}

Reflection
I first came across the project.? MatrixMadeEZ page when the details of the page were still listed

as TBA. I constantly checked and refreshed the page to see when the details and subsequent

instructions for this project would be posted so I could begin thinking of possible ideas. Not

more than a couple days after I submitted my Engineering Report for Project 8. Shift Register –

Bargraph, the MatrixMadeEZ project was announced. But, in order to get the PCB and begin my

project, I first had to get my onboard Arduino working, and in that began my initial struggles

with this project. I ran through each component multiple times, checked to make sure the 5V

regulator was indeed outputting 5V to the power rail; yet the statement “Invalid Device

Signature” still flashed on my screen. I decided to take apart my third iteration of the onboard

Arduino and attempt to rewire it one more time. All my frustrations disappeared when the LED

began to flash the blink sketch. Once gathering and soldering my components I spent multiple

hours playing with the shiftout command and turnary statements to play with and discover the

animations possible on an LED matrix. Upon finishing my code, I believe that my project was a

complete success. I found a sensor that was interesting in both its mechanics and practical use, I

created animations to properly display those readings, and I never felt like I was doing work: I

felt I was doing what I loved.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 41

Project 10. Design Sessions

Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html - Design

EAGLE

Purpose
The purpose of the three EAGLE sessions is to learn how to use the basic tools and principles in

designing a Printed Circuit Board (PCB). EAGLE is a computer application designed by

Autodesk to help create and prepare PCB’s to be manufactured. Knowing how to design and

send PCB’s off to be manufactured is a necessary component of being able create functioning

and easy to understand prototypes and products. In these design sessions, not only are these tools

and their subsequent functions taught, but also how to apply them to an actual PCB, in this case;

a Seven-Segment Display tester. The Seven-Segment Display tester functions off of the same

general principle of an LED tester, supplying female header pins for the Seven-Segment to plug

into the board. The power is immediately supplied to all the necessary pins of the Seven-

Segment, with the Common Cathode pins being tied to ground via a PBNO. When the PBNO is

pushed, the Common Cathode pins become grounded, lighting all the separate LED segments

(including the decimal point) and indicating which of the Segments function correctly.

Procedure
Open the EAGLE software and create a new

project entitled “SevenSegmentTester”. Create a

project schematic by right clicking on the project

and clicking “New Schematic” in the drop down

menu. Download the SparkFun and Adafruit

libraries from github and save them to a folder

labeled “EAGLE Libraries”. Within EAGLE,

select “Options”-“Directories” and route the

Library bar to the folder holding the previously downloaded libraries. Open the previously

generated schematic and select “Add Part”. Add each of the components listed in the EAGLE

Parts Table by typing the code listed into the search bar. Move and rotate each of the components

until they are well organized and fit within a reasonable space. Add junctions to wherever two

components will be connected. Connect the power pin of the DC jack to pins dp, a, b, c, d, e, f,

and g on the Seven-Segment Display. Connect both of the Common Cathode pins to one side of

the PBNO via a 470 resistor. Connect the other side of the PBNO to the ground pins of the DC

jack. Use the “name” and “value” tools to name each of the parts and display their values. Use

the “label” tool to name the “GND” line, the “VIN” line, the “CC” line, and the “Switch” line.

Once everything is given a name or value, all the connections are junctioned, and all the

connections are correct, click on the “switch to board” button in the upper left corner of the

screen. Once the board diagram is generated, group all the parts together and move them into the

board area. Rotate and place all the parts within the board area so they fit well and are in the

desired location. Using the “info” tool, change the values of each of the lines surrounding the

parts so that the board area is now a 40mm x 40mm square. Select “Tools” then Design Rules

Check (“DRC”) and set the default size of the copper trace to 40mil. On the top layer(1), select

the “Route” tool and connect all of the components powered by the DC jack; in this case,

EAGLE Parts Table

Component Code #

DC Jack DCJ0202 1

Omron PBNO 40-XX 1

470 resistor R-US_0207 1

CC 7-Segment

Display
HD-H101 1

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html#Design

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 42

connect all the pins on the Seven-Segment Display that require power to the VCC pad of the DC

jack. Switch to the bottom layer(16), connect the rest of the parts that require a ground

connection(Switch, CC pins, resistor) to the ground pads of the DC jack. Create 4 3.04mm

diameter holes and place them at a 3mm offset in each corner of the board. Use the rounded

“miter” tool and mitre the edges of the board until the radius of the miter roughly matches the

shape of the hole. Create a new layer labelled “tSilk” (layer 112) and select that layer in the drop

down menu. Using the “line” tool, closely outline the outsides of the board in whichever color

was chosen for the layer. Use the “text” tool to write creators name, and whatever else is

necessary. Bring in the ACES logo as BitMap image profile (BMP) and arrange it on the board.

Now the board is ready to be manufactured. Select “Cam Processor” and in the load job drop

down menu, select the SparkFun Cam Processor, and a location to save the file. Load the

DirtyPCB’s website and drag the zip file into the “choose file” tab. Select preferred board

settings and load into the board preview to see the finished product.

Reflection
I have been interested in designing and manufacturing PCB’s since I was first thinking of my ISP

in grade 10. I looked into separate software design programs and tutorials but they all detailed

extremely complex circuits and tools I wasn’t able to understand. Upon learning the basics of

EAGLE, I realized that designing was not as complex as I had imagined previously. Of course,

every Computer Aided Drawing software is different and some excel at certain aspects more than

others, but in my opinion EAGLE is more friendly to beginners and hobbyist, but can also

support intermediate and advanced users. As well, I learned about exporting and importing DXF

files to allow seamless transition between different Autodesk programs, which will help progress

my 3D designing. In conclusion, in learning EAGLE, I picked up a skill necessary and useful in

progressing as an Engineer, that opens up a world of possibilities for future projects.

Media
Schematic diagram

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 43

Board diagram

Top preview from DirtyPCB’s

Bottom Preview from DirtyPCB’s

Case designed in Fusion 360

ViaCAD

Purpose
The purpose of the three ViaCAD sessions is to learn the tools and ideas when it comes to 3D

designing. ViaCAD is another Autodesk Computer Aided Drawing software; but, unlike

EAGLE, ViaCAD is used as a tool for 2D and 3D design rather than PCB design. The goal for

these three sessions is to design a mount for the 28-BYJ stepper motor that will secure it

underneath the chassis of an autonomous vehicle. The case is designed to screw or bolt

underneath the vehicle chassis and hold the motor in an optimal position for the wheels to spin.

3D and 2D designing, although complicated, is yet another necessary tool for progressing the

development and testing of prototypes and products. In using 3D design, complex forms can be

created and tested in rapid succession. With the help of the 4 ACES 3D printers found in the

back of the DES, designs can be formed and tested within hours of being created.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 44

Procedure
Open ViaCAD and sign in using the key

provided in class. Create a new sketch entitled

“StepperMotorCase” and save it to an easy to

access folder. Begin a sketch and select to start

on the Z plane, to do this, select “View” and

then “Top” from the drop down menu. Open

the document provided by Mr.Elia and follow

the instructions to create a 2 dimensional

sketch of the top view of the motor. Create

lines 1.2mm long extending from all the joints

or arc bases outwards. Connect all of these

points using lines and 3 point arcs to make a shell of the existing diagram. Use the “show/hide”

tool to hide the construction lines that are no longer necessary. Select all the lines, arcs, and

circles that created the original motor diagram and group them together using the “group” tool.

Select “View” then “Isometric” from the drop down menu. Using the “Push/Pull” tool, create a

downward extrusion 2mm long, this will become the base of the motor mount. Now, using the

“Push/Pull” tool, create a 19.5mm upwards extrusion. Using the “shell” tool, shell the previous

19.5mm extrusion to a depth of 1mm, this will leave a 0.2mm clearance for the motor to fit

properly. Create an extrusion for the “wings” of the motor to rest on by extruding the identical

shape from the original sketch, this will allow screws to be put through the 3D printed plastic to

hold the motor snuggly in place. Using the “box” tool, create a rectangular extrusion on top of

the motor housing that extend 20mm in both directions. Using the “cylinder” tool, create 2

3.04mm holes at each end of the rectangle, this will allow the housing to mount to the vehicle

chassis.

Media
2D sketch

3D sketch

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 45

Shell to house motor

Mount to attach to chassis

Reflection
I have been thinking about 3D design and printing since I witnessed the case design competition

in the grade 11 ACES program last year. I became instantly interested in the world of 3D

printing, so I did my research and eventually bought myself a 3D printer in June of last year. I

began designing and printing using rudimentary design platforms, tinkercad, OnShape, etc: but I

never really felt I could design to my full potential. At the beginning of this year, I began

designing in Fusion 360, and it truly felt like a landscape where I could design and produce

whatever I imagined, as long as I was aware of the tools and their functions. Upon being

introduced to ViaCAD, I became frustrated and pessimistic as to my abilities in using this new

program: I was unaware of the keystrokes, functions, and icons. This immediate flood of

frustration made me want to return to Fusion 360 for designing and prototyping the stepper

motor mount. Through the help of Mr.Elia, I realized that the programs were not completely

incomparable, but some simple adjustments had to be made. Since, I am still much more adept

and comfortable in Fusion 360, I will most likely use it for future designs; although, I believe I

am skilled enough to learn and use ViaCAD in order to help my classmates, and further my

knowledge of 3D design.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 46

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 47

Project 11. Smart Trash Can
Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/ISPs.html

Purpose
The purpose of this project is to dive deeper

into concepts and components introduced up

to this point, and create a unique and

interesting project. Specifically, this projects

purpose is to use a custom PCB, HC-SR04

ultrasonic distance sensor, a sharp IR

distance sensor, a micro servo, an Arduino

Nano microcontroller, code written in the

Arduino IDE, and 3D design and printing.

Through using these components, code, and

CAD design, a trashcan can be created that

serves two purposes. Firstly, an HC-SR04

will be placed to scan the front of the bin,

scanning for any movement or something

getting closer towards it. The HC-SR04 is an

ultrasonic distance sensor, using one side to

emit ultrasonic sound, that then bounces off

an object and is received by the echo side.

Through using a mathematical formula, this

time difference can be converted to

centimeter distance. If the HC-SR04 scans an

object within a hardcoded threshold (5cm),

then it triggers the mirco servo to lift its arm

90, lifting the lid and placing the contents

into the bin. A microservo motor is

controlled by sending a pulse width modulation (PWM) signal through the control wire. There is

a minimum pulse, a maximum pulse, and a repetition rate. Once something new has been placed

in the tray, the sharp IR (infared) distance sensor checks the depth of the internal reservoir, and

displays how full the trash can on a 10 LED bargraph custom PCB that uses two Shift Registers

to allow complete control of the bargraph. As well as increasing my knowledge in the

components included and coding, this project also serves the purpose of helping to further

progress 3D design and CAD skills learned previously in this course.

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/ISPs.html

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 48

Code
//Project : Smart trash can

//Author : Joshua Dolgin

//Date : 2019/02/21

//Status : Working

#include <Servo.h> //includes servo library

#include <SharpIR.h>//Includes the Sharp infared sensor library

#define model 430 //Defines the model of infared sensor

#define ENDROTATION 0 //defines a variable to end rotation

#define STARTROTATION 90//defines variable at which to start rotation

Servo myservo;

uint8_t latchPin = 4; //Pin connected to ST_CP (latch) of 74HC595

uint8_t clockPin = 5; //Pin connected to SH_CP (clock) of 74HC595

uint8_t dataPin = 3; //Pin connected to DS (data) of 74HC595

uint8_t pos = 0; // position of the servo

uint8_t trigPin = 7; // trigger pin on HC-SR04

uint8_t echoPin = 8; // echo pin on HC-SR04

uint8_t infaredSensor = A0; //Uses 8 bit unsigned integer to rename pin A0

SharpIR SharpIR(infaredSensor, 430); //Measures the distance away

long duration; // creates a variable to measure duration

uint16_t distance; // creates an unsigned 16 bit integer to measure distance

uint8_t digitMap[] = {0b11111111, 0b00111111, 0b000001111, 0b00000011}; // creates

an array of binary values

void setup() {

 Serial.begin(9600);

 while (!Serial);

 myservo.attach(9); // attach servo to pin 9

 pinMode(trigPin, OUTPUT); // sets trigger pin to OUTPUT

 pinMode(echoPin, INPUT); // sets echo pin to INPUT

 pinMode(dataPin, OUTPUT); //Sets dataPin to OUTPUT

 pinMode(clockPin, OUTPUT);//Sets clockPin to OUTPUT

 pinMode(latchPin, OUTPUT);//Sets latchPin to OUTPUT}

void lift() {

 delay(2000); // delay 2 seconds

 myservo.write(ENDROTATION); // write the servo to the end of rotation

 delay(1000); // delay 1 second

 myservo.write(STARTROTATION); // write the servo to start position

}

void checkDepth() {

 uint8_t dis = SharpIR.distance(); // this returns the distance to the object

you're measuring

 dis = constrain(dis, 4, 8); //Constrains the value between 4 and 30

 Serial.println("Internal Distance");

 Serial.println(dis); //Prints the average distance of centimetres

 dis = map(dis, 4, 8, 1, 4); //Maps the value between 4 and 30 to an integer

between 0 and 8

 for (uint8_t j = 0; j < dis; j++) {

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 49

 digitalWrite(latchPin, LOW); //ground latchPin and hold low for as long as you

are transmitting

 shiftOut(dataPin, clockPin, MSBFIRST, digitMap[j]); // shifts out the value in

the array at cell "j"

 }

 digitalWrite(latchPin, HIGH);//Returns the latch pin to high

 delay(1000); //delay 1 second

}

void scanTray() {

 myservo.write(STARTROTATION); //puts the servo to start of rotation

 digitalWrite(trigPin, LOW); // writes the trigger pin low

 delayMicroseconds(2); //delay 2 microsecond

 // Sets the trigPin on HIGH state for 10 micro seconds

 digitalWrite(trigPin, HIGH); //writes the trig pin high

 delayMicroseconds(10); // delay 10 microseconds

 digitalWrite(trigPin, LOW); // write trigger pin low

 // Reads the echoPin, returns the sound wave travel time in microseconds

 duration = pulseIn(echoPin, HIGH);

 // Calculating the distance

 distance = duration * 0.034 / 2;

 // Prints the distance on the Serial Monitor

 distance = constrain(distance, 0, 30);

 Serial.print(" External Distance ");

 Serial.println(distance);

 if (distance <= 5) {

 lift(); //execute lift function

 checkDepth(); // check depth

}

}

void loop() {

 scanTray(); // execute the scan tray function

 checkDepth(); // execute the check depth function

}

CAD

There are two elements of Computer Assisted Drawing software used in this project. Firstly,

EAGLE is implemented to design and prepare the PCB for this project. The goal of the PCB is to

reimagine Tim Moorland’s Shift Register bargraph, and implement a second 595 Shift Register

IC to light up all 10 LED’s rather than 8. To do this, bring all the components required (11 pin

bussed 330 resistor network, 10 LED bargraph, 2 SN74HC595 Shift Register ICs, and a 5 pin

header) into the schematic diagram and attach each of the VCC and GND pins to power and

ground respectively. Tie the overflow pin of the first Shift Register (pin 9) to the data signal pin

of the second Shift Register. Attach the first 10 output pins to pins 1 through 10 on the LED

bargraph. Convert the schematic to a board diagram and arrange the pieces so they fit well and

are aestetically pleasing. Route the connections using the top and bottom layers of the PCB, until

everything is connected to what it should be. Add silk screening to the header pins identifying

their purpose. Round the edges of the board using the mitre tool. Using the sparkfun CAM

processor, export the CAM files as a ZIP file containing everything required. Load the files into

a PCB website and select board thickness, color, coating type, etc. The second form of CAD

software employed in this project is Autodesk Fusion 360, a 3D design software. Open Fusion

and create a new sketch, then select a name when prompted. Begin a sketch on the top plane.

Draw a circle of diameter 90mm and a line roughly at the ¾ mark of the circle. Offset this shape

by 0.2mm, 1.4mm, and 2.6mm. Extrude the piece offset by 1.4mm 50mm upwards, then round

off the top using the fillet tool, so that an enclosed object is created, this will house the Arduino

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 50

and some hardware components. Along the flat edge, draw 2 16mm diameter holes 31mm apart,

this will house the HC-SR04 sensor. Create a tangential plane along the side of the cylinder,

perpendicular to the flat edge. Along this plane, sketch a rectangle that is 23.4mm tall, and

54.2mm wide, extrude this piece into the cylinder and use the cutting tool to create a place to

house the PCB. Above the PCB slot, create a rectangle with the dimensions of the servo motor

used, and offset that by 0.2mm. Extrude that inwards to create a cut out for the servo motor.

Create a lid using the same dimensions as the cylinder, and create a hinge with a 1.2mm hole in

the middle so the lid and the body can be joined. Create a rotating arm to be placed on the servo

with a semisphere shaped placement tray resting in front of the ultrasonic sensor. Create a bar

extending from the servo arm to the lid, held in place by two holes, this will lift the lid when the

servo arm is raised. Finally, use chamfers and fillets to add aesthetics and structural integrity.

Print each piece seperately, no infill and some supports is required.

Media

https://www.youtube.com/watch?v=oCvCiEcJl0o

Final Design with arm lifted

PCB in EAGLE

https://www.youtube.com/watch?v=oCvCiEcJl0o

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 51

Fusion 360 design

Final Design stationary

Procedure
Gather all the components listed in the parts table.

Solder the male header pins into the Arduino

Nano, and place it into a ½ size breadboard.

Connect the female headers to the male headers of

the other components. Connect the input wire of

the servo motor to pin 9 of the Arduino. Connect

the trigger and echo pins of the HC-SR04 to pins

7 and 8 respectively. Connect the output wire of

the Sharp IR distance sensor to analog input pin 0.

Connect the latch pin of the PCB to pin 4, the data

pin to pin 3, an the clock pin to pin 5. Connect all

the power and ground wires to the power and

ground rails of the breadboard. On a small square

of through hole solder board, solder 2 wires to the

power and ground pins of the DC jack, this will

supply the power to the Arduino and components.

Attach the Vin pin of the Arduino to the power

rail and the GND pin to the ground rail. Open the
Arduino IDE and create a sketch entitled “ISP_MEDIUM”. Include the servo.h and sharp IR.h
libraries. Use the #define function to define the Sharp IR model number, as well as the start and

end rotation positions of the servo. Use an unsigned 8 bit integer to rename the pin numbers to

which components are attached to the names or functions of those pins. Create 2 unsigned 16 bit

integers labelled “distance” and “duration”. Create a 4 cell array that includes 4 binary values (

in decimal 255, 63, 15, and 3). In the setup function, declare the trigPin, dataPin, clockPin, and

latchPin for OUTPUT, and the echoPin for INPUT. Create a lift() function that delays for 2

seconds, lifts the servo to the end of rotation, delays for another second, then returns the sevo

arm back to the beginning of rotation position. Create a scanTray() function that will scan using

Parts Table

Component #

HC-SR04 1

Sharp IR distance sensor 1

Micro Servo motor 1

Custom PCB 1

11 pin bussed 330 Resistor

Network
1

10 LED bargraph 1

SN74HC595 Shift Register 1

5 Pin male header 1

Arduino Nano 1

½ Breadboard Perma-Proto 1

3D printed pieces 6

Assorted Femal-Male wires 15

5V DC power supply 1

DC power jack 1

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 52

the ultrasonic sensor, and once an onject is perceived within a 5cm distance, employs the lift()

function. Create a checkDepth() function that checks the distance on the inside of the trash can

using the sharp IR distance sensor, the shifts out that value as a cell in the array. Upload the code

to the Arduino and confirm everything is working as intended. Once everything is functioning

correctly, solder the circuit in the same orientation on a ½ breadboard perma proto. 3D print all

the pieces required and arrange them in order of inner to outermost application. Press the

components into their designated spot in the 3D printed pieces, use some hot glue to secure them

if necessary. Connect the rest of the printed pieces using string and zip ties, and confirm

everything is rotating correctly. Plug in the circuit and confirm it still works. Press the bottom

plate into place and secure it with a little more hot glue to close off the design.

Reflection
In my opinion this project was one of the best ways to challenge myself enough so that I could

succeed, while feeling immense joy and being proud of myself upon completing it. I chose to do

this project so I could further enhance my 3D design skills and writing modular code. Since the

hardware in this project is not too intensive, I said to myself that the design and the code had to

be impressive. This was one of the first times I’ve ever written modular code, which seemed

weird at first, but made it entirely more easy to understand and find mistakes. At the end of this

project, I believe that my code was written to the best of my ability and serves its purpose

extremely well. Most of my bumps in the road when creating this project came in the CAD

aspects, some of my components were hard to design around, so it was difficult to create an easy

to print structure that could hosue everything required, and it took me multiple attempts. As well,

due to the unfortunate circumstances regarding Chinese new year, my PCB has not yet arrived,

yet my case is designed to fit it perfectly. In conclusion, even though I found this project hard to

continue and envision a working solution at times, I believe I used my skill sets in each of the

domains to the best of my ability and I am extremely proud in the product I was able to produce.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 53

Project 12. The ACES Rover Project

Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html - Rover

Purpose
The purpose of this project is to work together

as a team with two other ACES to create an

autonomous

rover that will maneuver itself through an

obstacle course. There are very little

restrictions on the components used, as long as

the only thing the rover communicates with is

itself. As well, there is a restriction limiting the

dimensions of the vehicle, it must be equal to

or less than 16cm in the X, Y, and Z directions.

Through being given this task ACES are forced

to adapt their mindset to work with others,

taking responsibility for either their own

procrastination, or dealing with the

procrastination of group members. This project

is designed for each team member to serve a

specific purpose in the domain which they chose to be the one they are most passionate about;

whether it be Design, Hardware, or Software. By doing this, each group member can further their

skill in the domain they feel most passionate about, as well as learn key information about the

other two domains from their group members.

Procedure

Gather all the hardware components required and lay them out. Following the hardware

procedure, connect all of the necessary components to the Arduino Nano VIA a ¼ perma proto

board. Connect all of the external components to a common power and ground. Finally, connect

all of the motors to the motor drivers. Using the Arduino IDE, flash the code onto the Arduino

Nano board and ensure that everything is working correctly as intended. 3D print each of the

necessary pieces according to the settings and programs outlined in the Design section. Once all

the pieces are printed, lay them out and ensure everything is there. Gather 24 bolts and hex nuts,

these will secure the motors to the chassis and motor mounts. Slide each motor mount onto the

motor, so that the bolt holes on the design and the motor line up. Put a bolt through each hole and

secure them in place using a hex nut. Slide each motor into place on the chassis and make sure

that each of the holes in the chassis line up to the holes on the motor mounts. Using the final 16

bolts and nuts, secure each motor to the chassis. Gather the 4 HC-SR04 ultrasonic sensors and

press them into place, with the right angle leads lining up to the rectangular cutouts in the

mounts. 3D print a shell of the body, using 5 perimetres and 25% infill to make sure that it will

retain its shape throughout the vacuum forming process. Using the mayku formbox, create a

vacuum form of the body. Trim the edges of the plastic using a sharp exacto knife and make any

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html#Rover

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 54

size adjustments if necessary. Secure the body to the chassis using hot glue. Plug in the two 9V

batteries to supply power to the rover. Finally, test that the rover is functioning correctly by

doing a test run of the course, change any software or hardware if necessary.

Design

Open Fusion 360 and create a new file entitled

“RoverDesign”. Create a sketch on the top

plane. In the sketch, create a 18.6mm by

22.5mm rectangle and offset it by 0.2mm and

by 1.8mm. Fillet the edges of the rectangle to a

radius of 0.2mm. Extrude the outermost shell to

a distance of 10.6mm. Create a sketch on one of

the side of the extrusion. Within the sketch,

create 2 holes with a diameter of 3.04mm, one

on the left side of the rectangle and one on the

right side. Dimension the centre of each circle

so that they are 5.3mm from the bottom and top

edge and 2.00mm from their respective side.

Using the “Cut” tool, create a cylindrical cutout

that creates 4 total holes, 2 on each side of the

mount, this is where the mount will be bolted

into the motor. On the top face of the rectangle,

create a sketch consisting of 4 3.3mm wide and

6.6mm long rectangles, one on each corner of

the face. In the middle of each rectangle

(dimensioned 3.3mm from the right side and

dimensioned 1.65 mm from the top edge) create a centre point circle 3.02mm in diameter. Repeat

this process on the other 3 rectangles. Extrude each of the rectangles (excluding the circles) 5mm

downwards, this will allow the motor mount to be attached to the chassis. Fillet the edge of each

hole what screws will be going through and chamfer the outside edges of the mount for ease of

printing. Using the “Cut” tool in the middle of one of the edges of the rectangle (perpendicular to

the motor holes), create a 2mm wide cutout in the centre of the edge to allow some flexibility

when putting the motor mount onto the motor. Create an offset plane, offset 35mm from the flat

side of the motor mount. Using the “mirror” tool, mirror the body just created, making a second

motor mount 70mm away from the first; this will allow for space between the motors for

electronics, wiring, and stability. Create a second offset plane, perpendicular to the other plane,

and offset this plane by 55mm. Using the “Mirror” again, mirror the two motor mounts, creating

4 total, spaced 70mm in the X and 110mm in the Y. Create a center point rectangle that begins

where the two perpendicular planes meet and has dimensions of 140mm by 70mm. Create

rectangular and circular cutouts for the motor mounts and bolt holes, allowing the motors to slide

into place and be bolted to the chassis. Extrude this rectangle to a height of 3.5mm to increase

the strength of the chassis. On the front of the chassis, create a sketch on the front face. Within

the sketch create a rectangle that is 45.40mm wide and 20.51mm tall. Offset this rectangle by

0.2mm and 1.8mm. Within the rectangle, Create 2 vertically aligned circles with a diameter of

17mm, dimensioned to be 1.70mm away from their respective side. Extrude this shape to a

distance of 10mm, this will house the HC-SR04 ultrasonic sensor. Create a midplane between the

Chassis below

Rover Chassis above

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 55

front and the back of the rover and mirror the ultrasonic sensor mount so now there is one on the

back of the rover as well. Using the same dimensions and steps, create vertical ultrasonic sensor

mounts centered on the right and left side of the chassis, using a new midplane between the left

and right sides of the rover. Finally, using the “form” tool, create a freeform body to encase the

electronics of the rover, ensure that the body will avoid the motors and each of the HC-SR04

sensors. Save each individual body as an STL file and bring them individually into Ultimaker

Cura. Print each body at 50% infill and 4 perimeters to ensure rigidity and strength.

Hardware

The hardware component of the rover is

relatively simple. It consists of four DC

motors, four HC-SR04 ultra-sonic sensors, a

four terminal DC motor driver, and an

Arduino Nano. Because each motor has two

terminals, making eight wires that need a

terminal on the four terminal driver, some

changes had to be made to the wiring

component. Two motors on each side were

daisy chained, so that the positives and the

negatives of each motor were soldered and

heat shrunk. Daisy chaining the motors to the

other on the same side, that reduced the amount of terminals need from eight to four, perfect for

the DC motor driver. The ultra-sonic sensors have four male pins, all of which were connected to

the on board Arduino. The same problem occurred with the power and ground wires of the

sensors as with the motors, there are not enough pins and terminals to power all of them. There

are only two ground pins and two power pins on the Arduino, and the sensors need four of each.

To solve this problem, eight wires (the four power wires and four ground wires) were joined to

two central wires, creating and central power and ground pins. In doing so, the need for four

VCC and four GND pins was reduced to one of each, eliminating that problem. Two wires,

ground and power, were soldered to the Nano’s VIN and GND pins to supply voltage to the

ultra-sonic sensors. The DC motor driver was connected to four analog pins to enable the motors

speed to be controlled. Motor A1 and A2 terminals control one sides motor, and motor B1 and

B2 terminals control the other. Having each side controlled separately allows the rover to turn

similar to a tank. More about the motor control will be touched upon in the software section.

Software

The code used to control the rover consists of reading from multiple ultrasonic sensors to know

direction, moving forward and adjusting speed to stay straight, and turning based off distance

values. These elements allow for the rover to be programmed to navigate any course with a

different layout than the course that was navigated in the competition. To read distance from the

ultrasonic sensors, the readDistance() function was made to simply manipulate the specified

trigg pin depending on which direction needed to be sensed. This function is called in

readDirection() where one distance reading is made of 30 averaged sensor readings. In

readDirection(), the sensor readings are then constrained and mapped to create the final

Parts Table

Component Quantity

Arduino Nano 1

DC motors 4

9 volt battery 2

Assorted wires 30

1/4 Perma proto board 1

DC motor driver 1

Rubber wheels 4

HC-SR04 sensors 4

Female DC power jack with wires 2

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 56

readings used for course navigation. The constrain() call determines the sensitivity of the sensor

and the map() call puts the readings in a 1-10 range for simplicity. The turnOrStraighten()

function is dual-purposed as it allows the rover to turn or keep straight when the rover is moving

forward. These two features can be manipulated with the distance conditions located in the if

statements used for right and left distances. The forward() function activates the pin pairs for

the right and left sides of the rover using analogWrite() to manipulate speed while making the

other pin low for each side.

Code
// NAME :Simon Peterson

// INSTRUCTOR :Mr. D'Arcy

// COURSE :ICS3U

// PURPOSE :Semi-Autonomous ACES Rover Code that provides all functions needed

to adjust for any course layout

// DATE :2019/03/9

uint8_t speed = 150; // 0-255 range for speed

#define goTime 1000 //sets forward duration

//front

#define triggF 5

#define echoF 6

//right

#define triggR 10

#define echoR 11

//left

#define triggL 3

#define echoL 2

uint8_t frontDistance;

uint8_t leftDistance;

uint8_t rightDistance;

uint64_t constrainedSensor;

long echoDuration; //long due to too much variation to use unsigned integers

void setup() {

 Serial.begin(9600);

 while (!Serial);

 //right side motors

 DDRD = (1 << PD3) | (1 << PD4);

 //left side motors

 DDRB = (1 << PB1) | (1 << PB4);

}

void loop() {

 /*Distance sensing, turning, straightening, and going forward functions

 can all be called in a certain order depending on the course layout

 */

}

void readDirection() { //change distance variable for each direction when calling

 echoDuration = 0;

 for (uint8_t i = 0; i < 30; i++) {

 readDistance();

 }

 echoDuration /= 30; //divide by 30 to average and smooth readings

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 57

 constrainedSensor = constrain(echoDuration, 0, 2500); //upp bound can be changed

to make more/less sensitive

 frontDistance = map(constrainedSensor, 0, 2500, 1, 10); //maps to new range for

course

 Serial.println(frontDistance); //print sensor values

}

void turnOrStraighten() {

 if (rightDistance == 1) { //change distance tolerances to either turn or

straighten

 PORTD = 0 << PD4;

 analogWrite(3, speed);

 speed = speed + 10;

 } else {

 speed = 150;

 }

 if (leftDistance == 1) {

 PORTB = 0 << PB4;

 analogWrite(9, speed);

 speed = speed + 10;

 } else {

 speed = 150;

 }

}

void forward() {

 analogWrite(3, speed);

 analogWrite(9, speed);

 PORTD = 0 << PD4;

 PORTB = 0 << PB4;

 delay(goTime);

}

void readDistance() {

 digitalWrite(triggF, HIGH); //trigg & echo can be changed to specify direction

 delayMicroseconds(10); //pulse length

 digitalWrite(triggF, LOW);

 echoDuration += pulseIn(echoF, HIGH); //30 readins are added up when called in

readDirection()

}

Media

https://www.youtube.com/watch?v=BiKr3W78RNk

3D printed and vacuum formed rover body

Motor mount

https://www.youtube.com/watch?v=BiKr3W78RNk

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 58

3D printed prototype body

Final design

Reflection

When reflecting upon this project it is hard to find ways in which I consider my teams project a

success. I consider whether the design I created for the rover was well done, both in terms of

overall design, and my ability to incorporate my group members requests for places to fit parts

and shape of the vehicle. However, I believe that the reason our groups rover did not do as well

was due in part to my procrastination. I went through multiple iterations of the design, and in my

opinion, I finished with enough time for my other group members to do the rest. It was easy to

confront hardware and software issues by simply stating “I am just the design guy”, and upon

reflecting I realize that I definitely should have been more involved in the other domians of this

project rather than just the one I was assigned. I normally like to work by myself on projects,

simply relying on my own skills and work ethic to either finish or not, which I believe is the

conditions in which I work the best. Although I prefer working alone, a group hardware project

was a new and exciting project that I was happy to take a part in, it helped me learn more about

choosing people to work with, and actually having people rely that you will hand them a

polished product. As well, when writing a group DER I found it especially challenging to

incorporate my teammates writing into my own report, as I couldn’t get everything to be

properly spaced, so unfortunately some gaps are left at the bottom of my pages. On top of

working on the rover with my group mates, I also had to maintain the 4 3D printers working in

the DES. Unfortunately one of the printers stopped working near the beginning of this project, so

only the 3 other printers were in commission. It was interesting to see every groups design

process and final designs, I learned alternative ways of thinking about problems from a design

perspective which was really great. So in conclusion, although my group wasn’t as successful as

planned, I learned from my mistakes, and hope to further progress my skills in all 3 domains for

the rest of the year.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 59

Project 13. Legacy PCB/Appliance: ATtiny Arduino

Reference

https://github.com/damellis/attiny

https://42bots.com/tutorials/programming-ATtiny84-attiny44-with-arduino-uno/

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html#LegacyPCB

https://learn.sparkfun.com/tutorials/pocket-avr-programmer-hookup-guide/all

https://dirtypcbs.com/store/pcbs

Inspiration

The inspiration for this project came from me

looking at a multitude of shrunken boards and

projects online and on the ACES home page. I

quickly realized that the ATiny is a very useful

IC, capable of basic Arduino programming and

control. It then came to mind that this board

could be used to make a micro-Arduino of

sorts, useful for small projects where the size or

cost of an Arduino or ATMega328P-PU would

be unecessary. I then thought it would be a good idea to add female headers so that the board

could function similar to an Arduino, an ISP header so the IC can be programmed on board, and

finally an on board 5V regulator with DC jack input. Using these 3 tools, a simple yet effective

PCB can be created that can serve the purpose of a programmer for the ATtiny24/44/84, or a

smaller Arduino board to test the capacbilities of your circuit with the ATtiny before going off-

board.

Procedure

Gather an ATtiny84 IC, some assorted wires, and a

breadboard. Using the sparkfun pocket programmer,

and the ACES AVR ISP breakout board, connect the

MISO, MOSI, RESET, SCK, 5V, and GND pins to

their respective pins on the ATtiny. Open the Arduino

IDE and open the blink sketch. Select the “Sketch”

option from the toolbar and then select the “manage

libraries” option from the drop down menu. Include

the damellis ATtiny library, and ensure it is installed.

Within the sketch, change the LED_BUILTIN to an

unsigned 8 bit integer defining pin 10 as “LED”. Within the IDE, select “board”-“ATtiny84”-“1Mz

internal oscillator”. Upload the sketch and connect a 5mm LED to pin D10 of the ATtiny VIA a 330Ω

resistor, and connect the cathode leg of the LED to ground. Once the LED blinks on a 50% duty cycle at a

½Hz rate, change the delay values within the sketch to make sure that everything is working properly.

Open EAGLE and create a new schematic diagram, include all the parts listed in the parts table above.

Arrange all the components so they are easily discernable and can be connected to other components with

Parts Table

Component
EAGLE

Code

5V regulator 78LXX 1

ATtiny24/44/84 IC DIL14 1

8 Pin header FE08-1 2

10F Capacitor CPOL-US 2

6x2 ISP header MA03-2 1

DC Jack DCJ0202 1

https://github.com/damellis/attiny
https://42bots.com/tutorials/programming-attiny84-attiny44-with-arduino-uno/
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html#LegacyPCB
https://learn.sparkfun.com/tutorials/pocket-avr-programmer-hookup-guide/all
https://dirtypcbs.com/store/pcbs

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 60

ease. Connect the GND pins of DC jack, 6x2 ISP

header, ATtiny, 10F Capacitors, and 5V regulator.

Label one of the pins on the 8x2 headers as “VIN”,

and connect that to the VCC pin of the DC jack, the

“IN” pin of the 5V regulator, and the VCC pin of one

of the capacitors. Connect the “OUT” pin of the 5V

regulator to the VCC pin of the other capacitors, as

well as the 5V pin of the ATtiny, and the 6x2 ISP

header. Connect the MISO, MOSI, VCC, GND, SCK,

and RESET pins of the 6x2 ISP header to their

respective pins on the ATtiny. Connect each pin on

the ATtiny to a single pin on one of the 8x2 headers,

this is so the IC can be used to test programming

while on the PCB. Now, select the “generate board” option in the toolbar. Drag each component into the

board view and using the “info” tool, create a 5cmx5cm square. Arrange the components in an aestically

pleasing order, while ensuring it will be easy to connect all the traces. Once all the parts are organized,

shape the board while ensuring it remains less than or equal to 5cmx5cm. Using the DRC, set the default

trace size 20mil. Use the “Auto Router” tool to route the connections. Change any connections or traces

you see necessary, ensuring that the connections are not too close to the copper pads or edge of the board.

Use the “name” and “value” tool to name and value each components, and drag the writing into a visible

and legible place. Add any other silk screening necessary, including pin names, ACES logo, board

outline, designers name, etc. Open the cam processor, and using the “ACESLegacyPCB.Cam” select all

necessary layers to export, such as; “tsilk”, “200 BMP”, “bsilk”, “dimension”, etc. Drag the exported ZIP

file into the DirtyPCB’s website, and select necessary board color, trace material, and board width.

Procedure Phase 2
Once the boards are received, remove them from

their vaccum sealed packaging and ensure the

board matches the gerber file previewed on the

dirtyPCB’s website. Lay out the components

required to solder two boards, this preparation to

test a second board should the first board tested not

fuction. Firstly, solder the 9V DC jack, 5V

regulator, and the 2 10F capacitors, ensuring the

correct orientation of the parts. Also, the 5V

regulator and 10F capacitors can be bent down to

lie against the board, reducing the overall profile of

the board. Once those components are soldered in,

connect a 9V battery to the DC jack and using a

DMM, ensure the output is 5V by probing the 5V

pad and the ground pad on the board. After the

power supply and regulation parts are soldered,

solder the chip seat and 2 1x8 female headers into

their respective position, making sure the notch on

the chip seat aligns with the notch on the silk

screening. Finally, solder the 2x6 female header

into position. Insert an ATtiny84 into the chip seat, aliging the notch of the IC with notch of the chip seat.

Gather the MatrixMadeEZ board and electret condensor mic breakout board used in the MatrixMadeEZ

project (see project 9). Insert the MatrixMadeEz into female header pins such that the ground pin is

connected to the ground header, and the other 5 pins span from A0-A4. Also, insert the microphone as an

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 61

appliance spanning pins A5-D10. Open the sketch previously used in the MatrixMadeEZ project and

change the pinouts to coincide with the new appliance. Program the board by using the sparkfun AVR

pocket programmer, attaching the ISP header to the 6x2 male header at the bottom of the board, the

direction of the cable is marked by the two silk screening lines coming from the bottom of the header.

Upload the sketch, using the ATtiny84 at 8MHz internal oscillator settings. Plug a 9V battery into the DC

jack and confirm everything is working as intended.

Reflection
I believe the most difficult part of this project for me was coming up with an idea to begin, I wanted

something useful for me, but also future ACES (a legacy). I then realized that many of our projects and

some of my plans for future projects involved using an ATtiny 14 pin micro controller, whether it be the

ATtiny84, 44, or 24. There my idea came to fruition, I quickly looked into ATtiny Arduino libraries, how

to program them, as well as their usefulness in hardware projects. Although the ATtiny 84 is only capable

of digital and analog reads and writes, shiftout() commands, and delay(), there is a lot of

possibilities using only those tools. So I thought that this would be an awesome project, just an

ATtiny24/44/84 programmer. I then quickly realized it would be very useful to have female header pins

connected to the outputs of the IC, allowing prototyping to be done on board. I became slightly concerned

when Mr.D’Arcy spoke to me about the previous attempt at the same PCB, and I was told to “get it right”,

and that I believe I did. I provided (in my opinion) all the necessary information for high and low level

coding with this IC, and most importantly I am happy with the result. I am extremely excited to receive

my protopack and see if this PCB could become one of hopefully many legacys I leave in the DES and

ACES program.

Reflection Phase 2
Upon receiving my board I was extremely excited to solder it. I had already printed my case, as

well as prepared a little bag housing enough of each component to solder two boards. I firstly

soldered all of the voltage regulation circuit and upon checking with a DMM, a relieving 5V

output appeared on the screen. I soldered the rest of components into place, having a series of

mini heart attacks hoping components were spaced enough. Once my board was soldered I

realized something and my heart sank, I thought that the 6x2 male ISP header was too close to

the IC, and that the programmer would not fit. I was extremely relieved when the header fit

almost too perfectly, with roughly a 0.5mm gap between the IC and the header. After testing my

board for the previous few days I am extremely content with the board I created. It fits the

purpose I created it to fulfill, it looks (in my opinion) really well designed and overall pretty

cool. Although there are some things I would change if I were to order a v2 of this board, I am

nonetheless proud of my idea and execution. Although this board will most likely challenge my

peers and I next year in the grade 12 course, I will be happy to have my name mentioned in their

DER, and hopefully continue my legacy.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 62

Media
https://www.youtube.com/watch?v=kUmnxdx_YRE

Breadboard prototype

EAGLE Board

DirtyPCB’s rendering

Fusion 360 Case

https://www.youtube.com/watch?v=kUmnxdx_YRE

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 63

Project 14. ACES Choice: Matrix Equalizer Stick
Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html

http://nuewire.com/info-archive/msgeq7-by-j-skoba/

Purpose

The purpose of this project is to use the

specialized MSGEQ7 IC, a 3.5mm audio jack

input, an ATtiny84, 2 Shift Registers and a 8x8

LED matrix to create a device that analyzes,

reads, and displays audio spectrum values. The

MSQEQ7 IC takes a single audio input, and

through using the strobe and reset pins, outputs

a string of sequential values corresponding to

certain ranges of frequencies, from 63Hz to

16000Hz. At start up the chip needs to be reset,

accomplished by bringing the reset line high

and cycling the strobe line. After the reset line

is brought low, the strobe line can then be clocked to retrieve the 7 frequencies sequentially.

After all 7 frequencies have been output, the chip starts back over at the first frequency. Then,

through using the ATtiny84 to read the output of the IC, and simple bar animation can be created

on a 8x8 LED matrix, with each of the 7 bars corresponding to a range of frequencies. The other

purpose of this project is to offer ACES one final project at the end of the year to develop their

collaboration and coding skills to the best of their current ability. By allowing students to

collaborate on code, this project also serves to help ACES work on communication and team

skills with their peers.

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/Tasks.html
http://nuewire.com/info-archive/msgeq7-by-j-skoba/

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 64

Procedure

Gather the PCB and the components required to

solder. Solder the chip seats, ensuring the notch of

the seat alignes with the silk screening notch.

Solder each of the capacitors in place, they are non

polarized, so simply ensure that the capacitance is

correct. Solder the audio jack and 6 pin right angle

header. Solder two 8 pin female headers into place

rather than the Matrix, so that the Matrix sits above

the TPIC595 IC. Once soldered, configure the

Arduino IDE settings to upload to the ATtiny84

(See Project 13). Download the JSkoba MSQEQ7

code, and create a new project entitled

“MatrixEqualizer”. Delete all unneccesary

components of the Skoba code, including all Serial.Print lines. Create 3 unsigned 8 bit integers

declaring the data, clock, and latch pins of the Shift Registers as 1, 2, and 3 respectively.

Create an unsigned 8 bit integer named

“colData” with a value of 0x01, this value will

control which column is being lit. Create an array

with 7 cell’s named “rowData”, beginning at

0x01, and ending at 0xFF. Within the for loop

that reads and places the analogRead values into

the “spectrumValue” array prepare to write to

the Shift Registers by writing the latch pin low.

Then, shift out the “colData<<i” this cycles the

columns from the 1st to the 7th column,

depending on which frequency is being read. Shift out the “rowData[spectrumValue[i]>>7]” this

reduces the 10 bit integer (0-1023), to a 3 bit integer (0-7), this effectively lights up the

corresponding amount of rows depending on how much of each frequency is detected. Finally,

write the latch pin to high, so that the next values can be loaded into the Shift Registers. This

code uses Persistence of Vision to create a seemless animation of each individual bar, when in

reality, the code is lighting each bar at a time and scrolling through at a rapid rate. Connect the

sparkFun pocket programmer to the PCB using the ACES ISP breakout board. Upload the code

and ensuring everything is working correctly.

Reflection
This is the last project assigned to us in our ACES grade 11 course, and for some ACES, the last

project ever. Although the main focus in the past couple weeks has been my long ISP, this was a

final challenge I was willing to accept. Earlier in the year, fellow ACE James Lank asked for

help on his code, he was attempting to create an animation on the H.Reed MatrixMadeEZ of the

7 audio spectrum outputs from the MSGEQ7 IC. My *not working* solution for him then

consisted of too many map(), constrain() and if statements to count, and despite our efforts,

no working solution was reached. This project for me is like a round two to show what I have

learned since that project earlier this year. Once given the board and components I immediately

went to solder, careful of the parts orientations. Once soldered, I had to base my code off of the

Parts Table

Component EAGLE Code #

6 pin Header MA06-1 1

3.5mm jack AUDIO_JACK 1

0.1F Capacitor C025 2

.01F Capacitor C025 1

33pF Capacitor C050 1

200kΩ Resistor 0207/10 1

ATtiny84 DIL14 1

74HC595 DIL16 1

TPIC595 DIL16 1

8x8 Matrix M07C881UR 1

8 pin header MA08-1 2

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 65

EAGLE board files provided to us. With my moderate knowledge of the pinout as well as coding

and uploading to the ATtiny84, I was already ahead of my classmates. Imagine my surprise

when I realized the dozens of lines of code I wrote previously could be replaced by two lines. All

that needs to be done is move the columns along with the spectrum values, accomplished simply
by the statement “colData<<i”. Instead of having to map and constrain the audio values at each

cell in the array from 0-1023(210) to 0-7(23), the values simply have to be bitshifted right 7 times.

Despite my frustration with my past self, I am extremely happy that I figured it out, and there

comes a great feeling with knowing your code is as consise and efficient as you can make it. I

took the extra work period as time to redevelop the board, using an Electret Condenser Mic, so

that there is an easier correlation between the display, and hearing the actual sound. As well,

since the matrices used on this board are pretty well obsolete, I chose to use the more current

pinout used on the MatrixMadeEZ. In conclusion, there comes a mix of happiness and sadness in

finishing the last non independent project of the year, which truly makes one reflect on how

they’ve grown. Upon reflecting onto my performance as a whole this year on these projects, I see

a reduction in size of my code and an increase in complexity, I see a case made for every project

I could, and most importantly I can look back upon my work and see how much I have benefit

from this course.

Code
uint8_t analogPin = 7; // read multiplexer using analog input 0

uint8_t strobePin = 8; // strobe

uint8_t resetPin = 0; // reset

int spectrumValue[7]; // to hold values

uint8_t data = 1; // DA: SER IN (Serial Input)

uint8_t clk = 2; // CK: SRCK (Shift Register cloCK)

uint8_t latch = 3; // LA: RCK (Register Clock)

uint8_t colData = 0x01; //which column is lit

uint8_t rowData [] = {0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF}; // How many

LEDs are lit

void setup(){

 pinMode(analogPin, INPUT);

 pinMode(strobePin, OUTPUT);

 pinMode(resetPin, OUTPUT);

 analogReference(DEFAULT); //Analog reference to 5V

 pinMode(data, OUTPUT);

 pinMode(clk, OUTPUT);

 pinMode(latch, OUTPUT);

 digitalWrite(resetPin, LOW);

 digitalWrite(strobePin, HIGH);

}void loop(){

 digitalWrite(resetPin, HIGH);

 digitalWrite(resetPin, LOW); //Reset the MSGEQ7

 for (uint8_t i = 0; i < 7; i++)

 {

 digitalWrite(strobePin, LOW);

 delayMicroseconds(30); // to allow the output to settle

 spectrumValue[i] = analogRead(analogPin); //Reading the analog value

 digitalWrite(latch, LOW);

 shiftOut(data, clk, LSBFIRST, colData<<i); //Move over i columns

 shiftOut(data, clk, LSBFIRST, rowData[spectrumValue[i] >> 7]);

//Determines amount of LEDs lit based off of the analog read of the frequency value

 digitalWrite(latch, HIGH);

 digitalWrite(strobePin, HIGH);

 }

}

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 66

Media
https://youtu.be/5aCXA6JaEWs

Soldered PCB

Edited PCB to include new Matrix and Electret Condensor mic

Board Testing

Final product encased

https://youtu.be/5aCXA6JaEWs

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 67

Project 15. The Bi-wheeled Rover

Reference
http://darcy.rsgc.on.ca/ACES/TEI3M/1819/ISPs.html

Purpose
The purpose of this long ISP project is to create

a two wheeled rover with radio frequency

communication, that can be controlled via a

joystick input. This project will use the L298

dual motor driver with 2A max channel current

to drive the two 6V 100rpm DC motors with

1.5A max stall current. The L298 (pictured to

the right) takes either a direct 5V input, or a 5-

12V input which then outputs a regulated 5V to

the 5V power pin, which can apply power to the

Arduino nano board via the VIN pin. The

direction of the motors can be controlled using

the 4 logic input pins, two for each motor. The

voltage applied to the motors can be controlled

by the Output A and B pins, which when tied to

a PWM signal, vary the voltage powering the

motors. The motors used have a maximum

torque of 3.6kg/cm, providing more than

enough torque for the 1.2 kg rover. For the

radio frequency communication protocol, two

NRF24l01 tranceiver (transmitter and receiver)

modules are used to send the RGB color values

and joystick data from the remote to the rover

electronics. These NRF modules connect to the

Arduino via a Serial Peripheral Interphase

(SPI), consuming GND, 3.3V, MOSI, MISO,

and SCK pins, while the Chip Enable (CE),

CSN (SS), and IRQ pins can be connected to

any other analog/digital pins available. The

NRF24l01 module has an operation frequency

of 2.4-2.525GHz, allowing 125 possible

channels for communication. The final new

component of this project is the sparkfun

analog joystick, which uses two potentiometers for the X and Y directions, and outputs two

corresponding values between 0 and 5V. Finally, this project serves the purpose of giving ACES

the creative freedom to pursue a creative and original project that they are interested to learn

more about, and hopefully by the end emerge with a deeper appreciation and knowledge of the

components and processes they chose to pursue.The long ISP stands as a test of student’s

commitment and creativity, truly showing if they are able to use the devices and critical thinking

skills taught in this course to their own advantage.

L298 Motor driver

NRF24l01 module

http://darcy.rsgc.on.ca/ACES/TEI3M/1819/ISPs.html

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 68

Procedure

Hardware

Collect each of the components required for the

remote PCB and lay them out. Solder each

component into place, careful of their orientation.

Solder the Arduino Nano onto the board, or

connect it using 1x10 female headers. Ensure

there is no short circuits on the board by

connection power and making sure that the

Arduino Nano is on and running the blink sketch.

Upload the transmitter code to the Nano and

ensure that the values are being read correctly and

transmitting by checking the Serial monitor. Cut

the end of 8 male to female wires, and solder the cut ends

into the 3.3V pin, the GND pin, and pins 13-8 of the

second Arduino Nano. Connect each of these

wires to their respective pin on the NRF24l01

module, in which pin 13-SCK, 12-MISO, 11-

MOSI, 10-CE, 9-CSN, and 8-IRQ. Upload the

receiver code to the second Nano, and confirm

that the Arduino is receiving the 2 joystick

values and the 3 RGB values from the remote.

Solder 4 male-female wires into pins 3, 4, 5,

and 6 of the Arduino. Connect the 4 female

ends of these wires to the logic input of the

L298 motor driver. Solder 2 JST-F connectors

in series for the Lithium-Polymer batterys, to

double the voltage but keep current constant.

Have the two remaining positive and GND

leads connect to a JST-M connector. Solder red

and black wires to their repective positive and

negative ends of both DC motors. Connect

these wires to the Motor-A and Motor-B

terminals of the motor driver. Connect a JST-F

connector to the 12V input and GND terminals

of the L298 driver. Connect the 5V output and

GND of the driver to the VIN and GND pins of

the Arduino. Solder the positive lead of the

RGB led strip to the VIN pin as well, and

solder the red, green, and blue leads to pins

A0-A2 of the Arduino. Once again, confirm

that the code receives the values, and that the

motors spin in the correct corresponding

direction to the motion of the joystick.

Parts Table

Component #

Arduino Nano 2

Sparkfun Joystick 1

6V 100rpm DC motor 2

NRF24l01 module 2

L298 motor driver 1

RGB led strip 1

3.4V Li-Po battery 2

SPDT slide switch 3

DC jack 1

Remote PCB

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 69

Software

Include the radio library and define the CE and CSN pins attached to the radio as pins 9 and 10

on the Arduino. Create 5 unsigned 8 bit integers to declare the names for the 2 joystick pins and

the 3 RGB pins. Create a data structure titled “package” housing 2 unsigned 8 bit integers for the

joystick readings, and 3 boolean variables for the switch readings. Set up all of the necessary

functions for RF communication, including the operating channel and addresses, as well as if the

module will be receiving or transmitting data. Load values into the data structure one at a time,

starting with the joystick values and then the switch values. Since the RF modules can only send

32 bits at a time, it is necessary to house the joystick values (0-1023, or 210) as unsigned 8 bit

integers (0-255, or 28) rather than 16. This is accomplished by bitshifting the joystick values 2 to

the left. Print each of the values in the Serial monitor, then send the data structure using the

radio.write command. In the receiver code, use the same setup as the transmitter, with the

exception of adding 4 extra pin declarations for the motor logic, as well as setting the module to

receive. Create 5 functions detailing the 5 motions of the rover; stationary(), goForward()

goBackward(), turnLeft(), and turnRight(). Once there is a radio signal to be received, use the

radio.read command to read the data structure, and then print out the read values to confirm

they are correct. Create and if() else() ladder that uses the joystick values to correspond to a

direction of the rover. Finally, write the inversion (~) of the RGB, so that the lead is grounded

when the switch is turned high.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 70

CAD

Create a sketch on the Y plane of a rectangle

45mm tall and 30mm across, and using the

spline, create an arc across one side of the

rectangle. Revolve the rectangle around the

bottom axis in a complete circle. Along the flat

side of the body, create a 8mm deep hole to fit

the motor shaft. Along the top of the wheel,

revolve a second strip, and create a freeform

cylindrical extrusion along the top, this will be

the tire of the rover. Create a midplane 65mm

from the flat side of the wheel, and mirror the

wheel and tire over that plane. Create a second

90mm disc, with a motor housing in the center

complete with two screws to hold the motor in

place. Create 6 holes 5mm in diameter, 3 along

the top and 3 along the bottom of the flat face

of the disc. Create a hollow, chamfered

extrusion 30mm long at a 15 angle. Mirror this

extrusion as well, and create a cylindrical

extrusion connecting the two pieces. Using the

“split body” tool, split the cylindrical body

symmetrically into a top half and a bottom half.

Create 3.04mm screw holes coinciding with the

holes in the disk on the top and bottom half of

the rover, allowing the top and bottom half to

be secured together by the disk. Create a ribbed

design along the bottom half of the rover

(purely for looks) and pattern the design across

the entirety of the body. Create a tail sticking

off the back of the rover, in order to stabilize

movement. Create two openings on the top of

the rover, to house the RGB LED strips. Finally, within the bottom of the motor body, create a

well to hold the 2 Li-Po batteries, as well as a cylindrical cutout in both the top and bottom half

of the rover to house the motors securely in place.

Top View of Design

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 71

Code
 Transmitter

//Project: Transmitter Code for Bi-Whelled rover

//Author: Josh Dolgin

//Date: 2019/05/26

//Status: Working

#include <RF24.h>

RF24 radio(9, 10); //CE (Chip Enable/Disable), CSN(SS)

byte addresses[][6] = {"1Node", "2Node"};

#define CHANNEL 14 //2.414GHz

uint8_t joyX = A0;

uint8_t joyY = A1;

uint8_t rLed = 7;

uint8_t bLed = 5;

uint8_t gLed = 6;

struct package //Create data structure

{

 uint8_t xVal = 0;

 uint8_t yVal = 0;

 boolean R = 0;

 boolean G = 0;

 boolean B = 0;

};

typedef struct package Package;

Package data;

void setup() {

 Serial.begin(9600);

 radio.begin(); //invoke the radio object

 radio.setPALevel(RF24_PA_MIN); //close range so minimum power sufficient

 radio.setChannel(CHANNEL); //Tx and Rx communication on same channel

 //https://tmrh20.github.io/RF24/classRF24.html#af2e409e62d49a23e372a70b904ae30e1

 radio.openWritingPipe(addresses[0]); //Transmit assumes these pipes

 radio.openReadingPipe(1, addresses[1]);

 radio.stopListening(); //Transmit rather than receive

}

void loop() {

 data.xVal = analogRead(joyX) >> 2; //creates 8 bit integer rather than 10

 data.yVal = analogRead(joyY) >> 2; //creates 8 bit integer rather than 10

 data.R = digitalRead(rLed); //Receives R value

 data.B = digitalRead(bLed); //Receives b value

 data.G = digitalRead(gLed); //Receives g value

 radio.write(&data, sizeof(data)); //Sends the data structure

 Serial.print(data.xVal);

 Serial.print(" ");

 Serial.print(data.yVal);

 Serial.print(" ");

 Serial.print(data.R);

 Serial.print(" ");

 Serial.print(data.B);

 Serial.print(" ");

 Serial.println(data.G); //Prints all of the data in the serial monitor

 delay(100);

}

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 72

 Receiver

//Project: Receiver code for Bi-Wheeled rover

//Author: Josh Dolgin

//Date: 2019/06/26

//Status: Working

#include <RF24.h>

RF24 radio(9, 10); //CE (Chip Enable/Disable), CSN(SS)

byte addresses[][6] = {"1Node", "2Node"};

#define CHANNEL 14 // 2.414 GHz

uint8_t in1 = 6;

uint8_t in2 = 5;

uint8_t in3 = 4;

uint8_t in4 = 3; // Motor control pins

uint8_t rLed = A0;

uint8_t bLed = A1;

uint8_t gLed = A2; // LED pins

struct package // Data structure to receive

{

 uint8_t xVal = 0;

 uint8_t yVal = 0;

 boolean R = 0;

 boolean G = 0;

 boolean B = 0;

};

typedef struct package Package;

Package data;

void setup() {

 Serial.begin(9600);

 pinMode(in1, OUTPUT);

 pinMode(in2, OUTPUT);

 pinMode(in3, OUTPUT);

 pinMode(in4, OUTPUT);

 radio.begin(); //invoke the radio object

 radio.setPALevel(RF24_PA_MIN); //close range so minimum power sufficient

 radio.setChannel(CHANNEL); //Tx and Rx communication on same

channel //https://tmrh20.github.io/RF24/classRF24.html#af2e409e62d49a23e372a70b904a

e30e1

 radio.openWritingPipe(addresses[1]); //select ONE addresses to write to

 radio.openReadingPipe(1, addresses[0]); //receiver and transmit are reversed

 radio.startListening(); // Receiver

}

void stationary() { //Stay still

 digitalWrite(in1, LOW);

 digitalWrite(in2, LOW);

 digitalWrite(in3, LOW);

 digitalWrite(in4, LOW);

}

void goForward() {

 digitalWrite(in1, HIGH);

 digitalWrite(in2, LOW);

 digitalWrite(in3, HIGH);

 digitalWrite(in4, LOW);

}

void goBackward() {

 digitalWrite(in1, LOW);

 digitalWrite(in2, HIGH);

 digitalWrite(in3, LOW);

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 73

 digitalWrite(in4, HIGH);

}

void turnLeft() {

 digitalWrite(in1, HIGH);

 digitalWrite(in2, LOW);

 digitalWrite(in3, LOW);

 digitalWrite(in4, HIGH);

}

void turnRight() {

 digitalWrite(in1, LOW);

 digitalWrite(in2, HIGH);

 digitalWrite(in3, HIGH);

 digitalWrite(in4, LOW);

}

void loop() {

 if (radio.available())

 {

 while (radio.available())

 {

 radio.read(&data, sizeof(data)); // Read the data

 }

 Serial.print(data.xVal);

 Serial.print(" ");

 Serial.print(data.yVal);

 Serial.print(" ");

 Serial.print(data.R);

 Serial.print(" ");

 Serial.print(data.B);

 Serial.print(" ");

 Serial.println(data.G); // Print the data on the Serial monitor

 }

 if (data.xVal < 150 && data.xVal > 100 && data.yVal < 150 && data.yVal > 100) {

// if the joystick is in the middle

 Serial.println("Nothing");

 stationary();

 }

 if (data.xVal < 150 && data.xVal > 100) {

 if (data.yVal > 151) {

 Serial.println("FORWARD");

 goForward();

 }

 if (data.yVal < 99) {

 Serial.println("BACKWARD");

 goBackward();

 }

 }

 if (data.xVal > 151) {

 Serial.println("LEFT");

 turnRight();

 } else if (data.xVal < 99) {

 Serial.println("RIGHT");

 turnLeft();

 }

 digitalWrite(rLed, ~data.R); //inversion of the Boolean value

 digitalWrite(bLed, ~data.B);

 digitalWrite(gLed, ~data.G);

 delay(100);

}

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 74

Media
https://www.youtube.com/watch?v=M1K6hx5Crig

Bottom Half of the Design

Top half of the Design

Soldered Remote

Hardware inside rover

https://www.youtube.com/watch?v=M1K6hx5Crig

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 75

Final Product

Reflection

This project was certainly the most rewarding one that I have done all year. When I began to

write ideas for my long ISP, I was comsumed with the what I interpreted to be the failure of my

groups rover during the term 2 ACES Rover Project. With the addition of the newly learned

communication protocols, an interesting combination of the two came to mind. I would set out to

create a two wheeled, RF controlled rover (two wheels looks cooler) with some controllable

RGB strip lights (because why not). My project began with choosing components that I could

design code and CAD around, so I set out to learn from mistakes on the ACE of Spades rover. I

began by choosing a motor with a much higher torque, in order to support the weight of the Bi-

Wheeled rover. This higher torque, however, comes at a price. The max stall current for the new

motors is 1.5A, much greater than the 200mA consumed by the geared down DC motors. This

higher current means that the motor driver used previously which has a maximum current flow

of 0.8A won’t work. I learned this the hard way, when two of those motor drivers began to

smoke and heat up when the motors were running. With two burnt drivers down, I found the

issue and bought a driver capable of handling this current. Other than that issue, I had very little

problems wiring the hardware for this project, but the software is an entirely different story. By

using Mr.D’Arcy’s example code as well as some tutorials on the internet, I was quickly able to

send two different pieces of data over RF, the X and Y values of the joystick. Once I tried to add

the color values, everything went downhill. Once the addition of the radio write and read

statements were added, all values went off the rails. I was getting 0’s for all of my data then all

of a sudden my X value was 1 and my red LED value was 554. As I later found out after trying

countless other methods of sending, arrays, characters, etc. I discovered that I could simply make

a data structure. A normal NRF transceiver can send 32 bits at a time, making two 16 bit integers

and 3 boolean variables a no-go. Once all the hardware and software was finished, I simply had

to design the rest. The first PCB I sent to china did everything I wanted it to, and didn’t fry my

Nano like I expected it to. The 3D design aspect of this project was tricky, but not impossible. I

created an extremely modular design, so that each piece can be printed, rapidly fixed and re-

printed if necessary. I found a sense of completion when I looked at my fully printed design and

smiled. The flexible filament treds for the tires is a really cool idea, that works much better than

anticipated. The split main body held together by the end disks, which are both in turn attached

to the motor work well and hold the body together, allowing for a balance between rigidity and

the ability to quickly open the design to fix or plug in electronics. Then, on the day before initial

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 76

presentations, everything that could go wrong, did. The leads on one of my motors broke off, the

NRF module burnt out, and the batteries no longer supplied enough current. After a quick trip to

trusty Creatron, and 4 hours of anxiety and sweat fueled soldering in my basement, a more

compact, efficient, and trustworthy wiring setup emerged. In conclusion, although this project

has had many, many, many issues, pushing me to my wits end, I created a product through

struggle, that shows my resiliency and capability of working on a project at the end of my grade

11 year. Looking back, I would do it all again, and that’s all that matters. Right?

ICS4U
AVR Optimization

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 79

Project 16. The GB machine

Reference
http://darcy.rsgc.on.ca/ACES/TEI4M/1920/Tasks.html - GBMachine

Purpose

The purpose of this project is to solder an

extremely useful PCB for breadboard

prototyping, as well as provide an introduction

to Surface Mount Devices (SMD). The purpose

of the GB machine is to power both sets of

power-ground rails on a breadboard, with some

extra extremely helpful additions to the

breadboarding process. The PCB uses two

separate SPDT slide switched to turn the power

on and off, and to choose what voltage to apply

to the rails, either input voltage or 5 volt regulated voltage. Most of the components used on the

PCB are Through Hole Technology, but with the addition of a single SMD LED and resistor, this

PCB allows for a quick but important introduction to surface mount soldering. Surface mount

soldering is quickly becoming the norm, and with less and less through hole parts being offered,

the limitations of THT are becoming very apparent. In order to combat this issue, it is important

to teach the skill of surface mount soldering as early as possible.

Procedure

Gather all the components listed in the parts table

and lay them out. In order not to overheat the

THT components, it is important to solder the

SMD components first. Take the solder paste out

of the fridge and press a dab of the paste onto the

tip of a toothpick. Clean the tip of the solder paste

syringe and return the paste to the fridge. Use the

toothpick to place a dollop of solder paste onto

each SMD pad. Using the tweezers, roughly

position the components onto the solder pads,

keeping in mind the polarity of the LED. Set the

hot air gun to 225° C and wait until it heats up. Hold the hot air gun perpendicular to the board

and make gentle circular motions in order not to heat one spot for too long. Continue to slowly

move the hot air gun towards the board until the solder melts and pulls the surface mount

components into place. Solder the rest of the THT components into place, carefully checking the

orientation and connections of each part. Test to make sure the SMD components work by

connecting 9V to the DC jack and turning the device on. The LED should light up when the

SPDT switch is in the “on” position. Connect the GB machine to a breadboard and test both the

Parts Table

Component #

GB Machine PCB 1

SPDT slide switch 2

L7805 5V regulator 1

diode 1

6x2 Male header pins 2

DC jack 1

9V battery 1

1204 SMD LED 1

1K SMD resistor 1

http://darcy.rsgc.on.ca/ACES/TEI4M/1920/Tasks.html#GBMachine

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 80

input voltage and regulated voltage values with a DMM. Build a simple circuit consisting of an

ATtiny84 and 8 LED’s to show the 5V regulated voltage capabilities.

Media
https://www.youtube.com/watch?v=9XFJa6iUPqI

EAGLE PCB

Surface mount components

Soldered GB machine

Breaboard Prototype

Reflection
Overall I believe that this was a very great first project to start the grade 12 year. Although the

new concept of surface mount soldering was introduced, I could still rely and build upon on my

though hole soldering skills to overcome that challenge. I believe that my first introduction to

SMD was extremely successful and I look forward to implementing it within my future projects.

In conclusion, this project was the perfect introduction and ease into what hopes to be a

thoroughly rewarding and challenging grade 12 year.

https://www.youtube.com/watch?v=9XFJa6iUPqI

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 81

Project 17. 3D Printing and Forming

Reference
http://darcy.rsgc.on.ca/ACES/TEI4M/1920/ISPs.html

https://manual.prusa3d.com/c/Original_Prusa_i3_MK3S_to_MMU2S

Purpose
The purpose of this project is to build,

troubleshoot and test all of the capabilities of

the Prusa MK3s Multi Material Upgrade 2.0,

which allows the printer to print in 5 colors or

materials, as well as the capabilities of the

Mayku formbox vacuum former. The Prusa

MK3s MMU2s upgrade uses 3 additional

stepper motors attached to the top of the

printer, as well as a series of 3D printed parts

and electrical components to switch between each of the 5 filaments loaded to the unit. The first

motor spins all 5 of the drive gears underneath the filament lines. The second motor rotates a

cylinder with angled ball bearings, pressing one filament onto the drive gear at a time, and

therefor driving the filament towards the filament selector. The filament selector motor turns a

threaded rod which in turn moves the filament sensor and bowden tube leading to the hotend to

line up with one of the 5 filament openings. Through the combination of design and software, the

MMU2s is able to simplify the process of printing in multiple colors, using a single extruder

nozzle. The upgrade can be built and attached within 6 hours, and printing in 7.

The Mayku formbox is a desktop vacuum

former produced with the hobbyist in mind.

The former uses two forms of plastic sheets,

each require different temperatures and timing

to produce the desired vacuum sealed affect.

The sheet is sandwiched between two metal

extrusions, and lifted to the top of the machine

to the heater grate. Once the plastic is heated to

the point it droops 1cm below the metal

extrusions, the vacuum connected to the back

of the machine is turned on. The vacuum sucks

air through the metal grate along the bottom of

the formbox. This takes all the air from under the plastic sheet, creating a perfect mold of the

model placed on the metal grate.

Prusa MMU2s

Mayku Formbox

http://darcy.rsgc.on.ca/ACES/TEI4M/1920/ISPs.html
https://manual.prusa3d.com/c/Original_Prusa_i3_MK3S_to_MMU2S

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 82

Prusa MK3s MMU2s

Procedure

Unbox the MMU2s upgrade kit and lay the bags

out in ascending order based on the label number.

Open the Prusa online manual and begin with

instruction set 1 and continue until the upgrade is

completed. Attach the upgrade to the printer via

the snaps located at the back of the unit. Flash

both the printer and the upgrade with the most

recent firmware additions and check to

ensure everything is properly assembled. Begin

the troubleshooting process and ensure

everything is up to the standard listed in the

manual. Begin the first test print and confirm

everything is working as intended. Open Fusion

360 and create a new design. To test the multi-

color capabilities of the printer, import an svg

image of the RSGC school crest. Selecting a

single shape of the crest at a time, extrude each

piece to create a new body at the desired height.

Export each of the bodies one at a time to a single folder. Open the Prusa slic3r and import each

of the bodies within the the folder. Assign the extruder number tied to the color you would like

to each of the bodies in the file. Change any other settings to ensure print quality and reduce

printing time. To test the multi material capabilities of the upgrade, create a sketch of two 50mm

by 80mm rectangles and extrude them to height of 1.2mm. On top of the new extrusions create

two bridges between the rectangles that are 40mm long. Connect the bridges so that a circle is

formed in the middle of the two rectangles. Export each body as an stl file into a designated

folder and drag the contents of the folder into the Prusa slic3r. Slice the model and watch the first

couple layers of the print to ensure everything runs smoothly. Take the hinge and attach each

side of it to a 2” by 4” rectangle of scrap wood using 3 ¾” wood screws. Sand and trim any

pointed or unwanted strands of filament attached to the print.

Media

https://www.youtube.com/watch?v=YuwwHZVtlIk
Hinge designed in Fusion 360

RSGC crest being printed

Parts Table

Programs

Fusion 360

Prusa Slic3r

Parts

Prusa Mk3s

MMU2s upgrade kit

Assorted Prusa filaments

RSGC crest in Fusion 360

https://www.youtube.com/watch?v=YuwwHZVtlIk

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 83

ACES RSGC crests

MMU2s sampler tray

Mayku Formbox

Procedure

Turn on the Mayku formbox and attach the

vacuum hose to the back of the machine. Turn the

“timer” dial to 1 minute 20 seconds. Turn the

“tepurature” dial to 5. Wait until the blinking

amber light beside the temperature dial turns

green, this means that the machine has reached

the desired temperature. Lift the yellow lever on both sides of the top metal extrusion and lift the

plate all the way to the top. Place the plastic sheet in the open slot left on the lower metal plate.

Lower the top metal plate back down and snap the levers into place. Raise the metal and plastic

sheets to the top of the guide rods. Click the timer button on the left side of the machine and wait

until the light changes from red to green. Once the button turns green, place the models to be

formed along the metal grate in the preferred arrangement and turn on the vacuum. Slowly lower

the plastic sheet, giving the vacuum enough time to suck out all the air from underneath the

plastic. Leave the vacuum on for an extra 10 seconds to cool the plastic. Turn off the vacuum and

lift the upper metal sheet to the top of the guide rods. Remove the plastic sheet from the slot, and

pop out the model from the vacuum seal. Following the previous steps, create a single vacuum

mold of the 12 3D printed RSGC crests. Remove the 3D prints from the plastic sheet and set

them aside. Slowly melt 2 cups of semisweet chocolate, and remove the pan from the heat. Using

a clean paintbrush, paint a thin layer of chocolate in each individual mold, ensuring the casted

result retains the detail of the model. Using a spoon, add and smooth the chocolate in each mold

until the mold is full. Place the sheet into the freezer and wait 30 minutes before removing the

chocolate from the mold and placing them into a Tupperware container. Place the container into

the fridge until ready for consumption.

Parts Table

Part Quantity

Mayku Formbox 1

Formbox cast sheets 1

3D printed RSGC crests 12

Assorted Multi-color prints 7

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 84

Media
Vacuum formed RSGC crest

Vacuum shell

Vacuum form of complex geometries

RSGC chocolate crests

Reflection
n late August I sent Mr. D’Arcy an email, reminding him of the Prusa Multi Material Upgrade,

something we had discussed before the summer and agreed would make a great addition to the

DES. Within the first week of my grade 12 year, the familiar but always exciting walk down to

pick up a package for the DES enticed me yet again, what could this package be? Lo and behold

it was the upgrade kit I had been thinking about for the past couple of weeks. Even better than

ripping the plastic wrapping off of the cardboard box like a toddler on Christmas morning was

checking the ISP page and seeing that a new project had appeared, under the title of Prusa Multi-

Material. Over the next week I continued to chip away at the build process, off in my own head

about how I would love to do that project. When it came to selecting our ISPs in class, I selected

my project and sat there anxiously hoping no one would write the same words on their sheet of

paper. After 15 minutes of the ISP yankee swap, I remained with my initial choice. This project

hasn’t taught me anything new; however, it helped me build upon the ideas already ingrained

from my previous hardware experience. I spent the usual 3 hours in the DES after school

tinkering away with Allen keys and dials, rather than prodding with a DMM. I spent a couple of

minutes looking directly at the problem before identifying that it was, in fact ,the problem.

Throughout the 5 weeks of working on this project I have gained extremely valuable knowledge

and skills on two of the most important and complex prototyping devices in the DES; this

information is not only useful to me, but to my classmates, as the final extension of my project is

to share my expertise with whoever would like to listen.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 85

Project 18. CharlieStick

Part 1

Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/1920/Tasks.html - CharlieStick

Purpose

The purpose of this project is to refresh and

further refine surface mount soldering skills, as

well as educate ourselves in the software

technique of charlieplexing. The year began

with a brief introduction to the soldering of the

1206 LED and resistor packages using the

AOYUE hot air gun. This project aims to build

upon those fundamental skills by soldering 12

1206 LED’s, and an extremely small 3216m

resistor network. Charlieplexing is the idea of

efficiently using as few digital IO pins on the

Arduino to control as many LED’s as possible. Since LED’s are polarized, and only allow

current to flow through in a single direction, LED’s can be arranged and connected in separate

permutations rather than combinations. Through using this technique, 12 LED’s can be driven by

4 pins on the Arduino. In the diagram below, there are 12 permutations of pins; AB, BA, AC,

CA, AD, DA, BC, CB, BD, DB, CD, and DC, each of these permutations corresponds to one of

the 12 LED’s. Since there are resistors on pins A, B, C and D, it is important to keep in mind that

the resistance on each LED is the sum of the resistors attached to the cathode and anode of the

LED. Through changing the configuration and states on the 4 pins, 1 LED can be controlled at a

time to create complex animations.
Charlieplexing Schematic

http://darcy.rsgc.on.ca/ACES/TEI4M/1920/Tasks.html#CharlieStick

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 86

Procedure

Gather all the surface mount components and lay

them out on the silicon sheet. Remove the solder

paste from the fridge and eject some paste onto a

tissue. Using a toothpick, place a dab of the solder

paste on all the pads for surface mount

components. Arrange all the components onto the

PCB using the small tweezers, mindful of the

orientation of the LED’s. Turn on the

AOYUE solder station and preheat the SMD rework hot air gun to 250 °C. Begin high above the

board, and gradually lower the hot air gun, making small circular movements. As the solder paste

melts, each component will be pulled into the correct position. Using a solder pen, solder the 4-

pin right angle header onto the PCB. Using 2.4V, touch the header pins in every permutation,

ensuring all LED’s are working correctly. Using the dimensions of the board, design a simple

case in fusion 360 that slides over top of the PCB, showing the LED’s but covering and

protecting the rest of the PCB. Open the Arduino IDE and create a new sketch labelled

“CharlieStick”. Create an array housing all the pin numbers used for the CharlieStick PCB.

Define the amount of LED’s (12) as well as the number of pins (4). Create a marix, with 12 rows

and two columns, with each row corresponding to an LED, while the columns refer to the pin
states and pin configurations respectively. Within the loop function, create a for loop that runs

as many time the number of LED’s. Within the for loop, create a second for loop that runs as

many times as the amount of pins used. Within the second for loop, assign each of the pins their

corresponding configuration and state values. Plug the CharlieStick into the Arduino as an

appliance and test the code, ensuring everything is working properly.

Media

https://www.youtube.com/watch?v=WzJIQHfZoLY
Soldered PCB

Signed back of the board

Parts Table

Component Quantity

CharlieStick PCB 1

1206 LED 12

1206 100 Resistor Network 1

4-pin right angle header 1

AOYUE hot air station 1

https://www.youtube.com/watch?v=WzJIQHfZoLY

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 87

Case designed in Fusion 360

Final product

Code
//Project: Create an animation for the Charlie stick

//Author: Josh Dolgin

//Date: 2019/10/25

//Status: Working

#define PinCon 0

#define PinState 1

#define LED_COUNT 12

#define numPin 4 //How many pins are used for the stick

uint8_t stick[] = {10, 11, 12, 13}; //What pins are being used

uint8_t configuration[LED_COUNT][2][4] = {

 { { INPUT, INPUT, OUTPUT, OUTPUT }, { LOW, LOW, LOW, HIGH } }, // 1

 { { INPUT, INPUT, OUTPUT, OUTPUT }, { LOW, LOW, HIGH, LOW } }, // 2

 { { INPUT, OUTPUT, OUTPUT, INPUT }, { LOW, LOW, HIGH, LOW } }, // 3

 { { INPUT, OUTPUT, OUTPUT, INPUT }, { LOW, HIGH, LOW, LOW } }, // 4

 { { OUTPUT, OUTPUT, INPUT, INPUT }, { LOW, HIGH, LOW, LOW } }, // 5

 { { OUTPUT, OUTPUT, INPUT, INPUT }, { HIGH, LOW, LOW, LOW } }, // 6

 { { INPUT, OUTPUT, INPUT, OUTPUT }, { LOW, LOW, LOW, HIGH } }, // 7

 { { INPUT, OUTPUT, INPUT, OUTPUT }, { LOW, HIGH, LOW, LOW } }, // 8

 { { OUTPUT, INPUT, OUTPUT, INPUT }, { LOW, LOW, HIGH, LOW } }, // 9

 { { OUTPUT, INPUT, OUTPUT, INPUT }, { HIGH, LOW, LOW, LOW } }, // 10

 { { OUTPUT, INPUT, INPUT, OUTPUT }, { LOW, LOW, LOW, HIGH } }, // 11

 { { OUTPUT, INPUT, INPUT, OUTPUT }, { HIGH, LOW, LOW, LOW } } // 12

};

void setup() {

}

void loop() {

 for (uint8_t l = 0; l < LED_COUNT; l++) { //Runs as many times as there are LED's

 for (uint8_t i = 0; i < numPin; i++) { //Runs as many times as the pins on the

stick

 pinMode(stick[i], configuration[l][PinCon][i]); //Sets the pin configuration

 digitalWrite(stick[i], configuration[l][PinState][i]); //Sets the pin state

 }

 delay(100);

 }

 for (uint8_t l = LEDCOUNT-1; l > 0; l--) { //Counts back down

 for (uint8_t i = 0; i < numPin; i++) {

 pinMode(stick[i], configuration[l][PinCon][i]); //Sets pin configuration

 digitalWrite(stick[i], configuration[l][PinState][i]); //Sets pin state

 }

 delay(100);

 }

}

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 88

Reflection

I was sitting in my little corner of the DES during a period 2 spare when Mr. D’Arcy introduced

this project to me. I was handed a CharlieStick PCB and 12 surface mount LED’s and given the

option to solder them during my free time. Along with the LED’s came an unfamiliarly tiny

component, a 3216m resistor network. I was blown away by how small each of the solder pads

were. After soldering 3 CharlieStick PCB’s, each with a different value of resistor network, I can

confidently say my comfortability with surface mount components has increased drastically. I

was able to reduce the time to solder the PCB from 40 minutes to 8 minutes, all from practice.

After soldering my PCB, I was met with a certain amount of relief; that was all the work I had to

do for this DER. That relief was slowly overcome by my unease, I may not be able to code it. In

an effort to get ahead, I did some research into charlieplexing, and the software behind it. To my

surprise, within an hour or two, I had a somewhat concise piece of code that did exactly what I

wanted it to do. In conclusion, part 1 of the CharlieStick process was a complete success for me,

I bettered my surface mount soldering and coding skills, two things that were in need of

improvement.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 89

Project 19. CHUMP

Part 1: Code

Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html - tasks

Code

High Level
Machine Level CHUMP (Assembly)

Level
Comment

Address Instruction

n=0 0000 0000 0000 LOAD 0 accum = 0; pc++;

 0001 0110 0010 STORETO 2 mem[2]<-accum; pc++;

for(x=5;

x>0; x--)
0010 0000 0101 LOAD 5 accum = 5; pc++;

 0011 0110 0001 STORETO 1 mem[1]<-accum; pc++;

 0100 1000 0010 READ 2 addr<-2; pc++;

 0101 0001 0000 LOAD IT accum = mem[2]; pc++;

 0110 1000 0001 READ 1 addr<-1; pc++;

n = n+x 0111 0011 0000 ADD IT accum+mem[1]; pc++;

 1000 0110 0010 STORETO 2 mem[2]<-accum; pc++;

 1001 1000 0001 READ 1 addr<-1; pc++;

 1010 0001 0000 LOAD IT accum = mem[1]; pc++;

 1011 0100 0001 SUBTRACT 1 accum--; pc++

 1100 1100 1110 IFZERO 14 accum==0?pc=14; pc++;

x!=0 1101 1010 0011 GOTO 3 pc<-0011

x=0 1110 1100 1110 GOTO 14 pc<-1110

Explanation

This code is my attempt at making an Arduino C for loop in chumpanese. First a constant 5 is

loaded into the accumulator, and then 1 is subtracted from the 5. The subsequent result is stored

in memory address 1. Then the constant in memory address 2 is loaded into the accumulator, in

which the constant in memory address 1 is added. This result is stored back into memory address

2. Then the value in address 1 is put back into the accumulator. If the number located in the

accumulator is 0, then the code goes to line 12 and the program ends, if the number in the

accumulator is not 0, the program counter goes back to line 1. This program will run 5 times and

each time it will add 5, 4, 3, 2, or 1, depending on how many times it has looped.

Part 2: Clock

Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html - clock

https://youtube.com/watch?v=kRlSFm519Bo

https://www.youtube.com/watch?v=81BgFhm2vz8

https://www.youtube.com/watch?v=WCwJNnx36Rk

https://www.youtube.com/watch?v=SmQ5K7UQPMM

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#tasks
http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html%20-%20clock
https://www.youtube.com/watch?v=kRlSFm519Bo
https://www.youtube.com/watch?v=81BgFhm2vz8
https://www.youtube.com/watch?v=WCwJNnx36Rk
https://www.youtube.com/watch?v=SmQ5K7UQPMM

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 90

Purpose

The purpose of this project is to demonstrate

the three possible states of a 555 timer IC;

monostable, astable, and bistable. Through the

use of these states and an additional 3 logic

IC’s, a clock logic circuit can be developed,

which can switch between continuous astable

oscillation output, and a manual debounced

output. Within the 555 timer is an SR (Set

Reset) latch, with two outputs, a Q output on

pin 3, and an inverted Q output. Attached to the

S or R pin of the SR latch is a comparator,

which will compare the two analog signals, and

output either a high or low signal depending on

whether the voltage on the “–“ pin is less than

the voltage on the “+” pin. When the output is

reset, the inverted output flows to the base pin

of a NPN transistor, allowing current to flow

from pin 7 to pin 1.

Monostable

The purpose of the monostable 555 timer

within this circuit is to debounce the manual

input from a PBNO. When a PBNO is pushed

and therefore closed, the metal tabs that connect

the two leads often touch multiple times, rather

than once. When viewed on an oscillioscope, it

is clear that the PBNO often bounces multiple

time per input. When using a manual input to

advance the Program Counter of the CHUMP,

it is important that the program advances by 1

line each time the button is pressed, rather than

multiple times. When the PBNO is pushed, the

trigger pin (pin 2) is pulled low, causing the

comparator to be turned on, activating the set

pin of the SR latch within the 555 timer;

therefor activating the output. As well, when

the PBNO is closed, the capacitor begins to

charge, and once the charge of the capacitor

becomes greater than the threshold voltage of

the second comparator, the latch is reset, and

the capitor discharges.

Astable

The purpose of the astable 555 timer within this

circuit is to create an oscilatting clock pulse

with a frequency or duty cycle that can be

controlled by using a potentiometer. This

555 Timer

MonoStable 555 timer

Astable 555 timer

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 91

circuit is designed to create a square wave output from pin 3, which the frequency or duty cycle

can be controlled by changing the values of resistance or capacitance of R1, R2, and C1. As the

capacitor C1 begins to charge, the voltage will be less than that on the trigger pin, activating the

output of the SR latch. As the capacitor continues to charge, at some point the charge of the

capacitor will overcome the 3.3V on the “-“ side of the second comparator, turning off the output

and discharging the capacitor, which will in turn begin to charge the capacitor again until the

voltage is below the trigger voltage, which will then turn on the output again. The frequency,

period, and duty cycle can be calculated using the following formulae:
𝑃𝑒𝑟𝑖𝑜𝑑 = 0.693(𝑅1 + 2𝑅2)𝐶1

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

𝑃𝑒𝑟𝑖𝑜𝑑
=

1.44

(𝑅1 + 2𝑅2)𝐶1

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
𝑅2

𝑅1 + 2𝑅2

By adding a variable resistor instead of a fixed R2 resistor, the period, frequency, and duty cycle

can all be changed by changing the resistance value.

Bistable

The purpose of the bistable 555 timer is to act as a flip-flop circuit, which alternates between two

stable states, a high output and a low output. This circuit works by attaching the middle pin of a

SPDT switch to ground, and attaching one of the poles to the trigger pin (pin 2) and the other

pole to the reset pin (pin 4). When the trigger pin is tied to ground, the first comparator will

activate the set pin of the SR latch, outputting a high voltage. When the reset pin is tied to

ground, the voltage runs through an inverter, and then activates the reset pin of the SR latch,

turning off the output.

Clock Logic

The goal of the clock logic circuit is to output

either the astable pulse from the astable 555

circuit, or the manual pulse from the

monostable 555 circuit, depending on the state

of the bistable 555 circuit. There are 3 logic

IC’s used in the clock logic circuit, the

74LS04, which contains 6 inverters, the

74LS08, which contains 4 AND gates, and the

74LS32, which contains 4 OR gates If the

select pin is high, then the AND gate with the

astable pulse will be turned on and oscillate

with the astable pulse, while the AND gate tied to the manual pulse will be 0, since the signal

from the select pin goes through an inverter. If the select pin is low, then the AND gate

connected to the manual pulse will go high, since the low signal is inverted, and the AND gate

tied to the astable pulse will go low. Both of these AND gates is tied to an OR gate, and since

only 1 of the AND gates outputs a signal at a time, either the manual pulse or the astable pulse is

output from the circuit. Finally, there is a halt signal, which runs through an inverter and into an

AND gate with the either astable or manual pulse. This is so that the program can be halted at

any moment by applying a high signal to the halt pin, setting the output low.

Clock logic gates

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 92

Procedure

Open Ben Eater’s 4-part video series of

constructing the clock logic circuit (found in

reference section). Gather all of the components

listed in the parts table and lay them out. Place the

first 555 timer into the breadboard and connect

pin 8 and pin 1 to VCC and GND respectively.

Connect pin 5 to ground via a 0.01F capacitor.

Connect pin 4 to VCC. Connect the center leg of

the potentiometer to pin 6 of the IC, and tie pin 6

to pin 2. Connect pin 2 to ground via a 0.1F

capacitor. Connect pin 7 to VCC via a 10K

resistor. Connect pin 7 to the outer leg of the

potentiometer via a 100K resistor. Connect the

anode of a LED to pin 3 and tie the cathode to ground via a 220 resistor. Place the PBNO into

the breadboard and tie the first lead to GND. Connect the other lead of the PBNO to VCC via a

1K resistor, as well as to pin 2 of the second 555 timer. Connect pin 8 and 1 of the second 555

timer to VCC and GND

respectively. Connect pins 6 and 7 via a jumper wire. Connect pin 6 to VCC via a 1M resistor

and connect pin 7 to GND via a 1F capacitor. Connect the anode of another LED to pin 3 and

connect the cathode to ground via a 220 resistor. Place the third 555 timer IC into the

breadboard and tie pins 8 and 1 to VCC and GND respectively. Insert a SPDT slide switch into

the breadboard and connect the center pin to GND. Connect one side of the switch to pin 4, and

the other to pin 2. Connect pins 2 & 3 to VCC via a 1K resistor. Connect pin 6 to GND and

connect pin 5 to GND via a 0.01F capacitor. Connect the anode of a LED to pin 3 and connect

the cathode to GND via a 220 resistor. Insert the 3 remaining IC’s into the breadboard.

Connect pins 7 and 14 of the IC’s to VCC and GND respectively. Connect pin 3 of the bistable

555 to pin 1 of the 74LS04 IC, and pin 1 of the 74LS08 IC. Connect pin 2 of the 74LS04 IC to

pin 4 of the 74LS08 IC. Connect pin 9 of the 74LS04 IC to GND. Connect pin 8 of the 74LS04

IC to pin 10 of the 74LS08 IC. Connect the output of the astable 555 timer to pin 2 of the

74LS08 IC. Connect the output of the monostable 555 timer to pin 5 of the 74LS08 IC. Connect

pins 1 and 2 of the 74LS32 IC to pins 6 and 3 of the 74LS08 IC respectively. Connect pin 3 of

the 74LS32 IC to pin 8 of the 74LS08 IC. Connect pin 7 of the 74LS08 IC to the anode of an

LED, and connect the cathode to GND. Connect 5V to the circuit and ensure each portion is

working correctly, troubleshoot if needed.

Parts Table

Component Quantity

555 timer 3

0.1F capacitor 3

PBNO 1

SPDT slide switch 1

500k potentiometer 1

Assorted fixed resistors 8

Assorted LEDs 4

1F capacitor 1

74LS04 inverter IC 1

74LS08 AND IC 1

74LS32 OR IC 1

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 93

78LS04 NOT gate pinout

78LS08 AND gate pinout

78LS32 OR gate pinout

Reflection

Upon reflection, this was not an extremely difficult project from a physical perspective, but I had

some issues with conceptualizing how each state of the 555 timer works. After a little bit of

research and rewatching of Ben Eater’s videos, I conceptually understood each part of this

circuit. Surprisingly, there was nothing to debug in my circuit, each part worked the first time I

tried it. Unfortunately I likely will not be as lucky during the rest of this project, as there will be

plenty more to debug in the coming weeks.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 94

Media

https://www.youtube.com/watch?v=3kM5tD6Ou0M&feature=youtu.be

Astable 555 timer

Monostable 555 timer

Bistable 555 timer

Clock logic

Final circuit

https://www.youtube.com/watch?v=3kM5tD6Ou0M&feature=youtu.be

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 95

Part 3: Arithmetic and Logic Unit

Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html - ALU

https://eater.net/8bit/alu

http://www.righto.com/2017/03/inside-vintage-74181-alu-chip-how-it.html

Purpose

The purpose of this project is to test the

SN74LS181 Arithmetic Logic Unit (ALU); a

24 pin TTL IC commonly used in computers in

the 1970s onward. The arithmetic unit takes

two 4 bit input values (A0-A3 and B0-B3) and

either performs arithmetic or bitwise logic

functions depending on the state of the mode

pin (M). The function which the ALU performs

upon the two 4 bit integers is dependent on the

states of the function select pins (S0-S3). Since

there is 16 possible function select states (

binary 0-15), there is 32 possible functions, 16

arithmetic and 16 logic. These functions are

performed across a series of AND, OR, NOR,

and NAND gates, computing the 4 outputs (F0-

F3) and outputting a high or low signal on the

outputs corresponding to the state of each

computed bit. The Cn pin of the ALU is only used

when performing arithmetic functions, and will

add 1 to the output. Whereas the Cn+4 will output

a value if there is a set bit in the next most

significant bit than F3. These pins are useful when

chaining multiple 181 ALU’s together, as

connecting the carry in pin (Cn) to the carry out

pin (Cn+4) results in a ripple carry capable of

computing more than 4 bits. Carry lookahead

(Cn+4) uses "Generate" and "Propagate" signals

(pins G and P) to determine if each bit position

will always generate a carry bit or potentially

could generate a carry out bit. For example, if you

add 0+0+C (where C is a single binary bit),

regardless of whether C is set or not, there will be

no carry. If you add 1+0+C or 0+1+C, whether or

not there is a carry is dependent on the C value.

Finally in the case of 1+1+C, there will always be

a carry generated. The ultimate goal of this stage

in the CHUMP process is to wire the 181 ALU on

a breadboard and manipulate both arithmetic and

logic functions using a DIP switch, developing a

deeper understanding of the IC in the process.

Logic gates within the ALU

SN74LS181 ALU pinout

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#ALU
https://eater.net/8bit/alu
http://www.righto.com/2017/03/inside-vintage-74181-alu-chip-how-it.html

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 96

Arithmetic

In order to perform arithmetic functions, the

mode select pin is set low, and the carry in pin

can be set high or low, but since multiple

ALU’s are not beign tied together carry in will

remain tied high to signify no carry in digit.

Arithmetic functions differ from logic

functions by allowing bits to be carried over to

the next significant bit position. For instance, if

the function was set to binary 1001, the

arithmetic A plus B function would be

performed. If A and B both had a set bit in the

same significant bit position, the output would

carry the bit to the next most significant bit

position. Within the arithmetic functions list,

there is certain specific logic functions, and

combined logic and arithmetic functions.

Logic

The logic functions perform strictly bitwise

logic, meaning no carries are needed, so the

carry in bit can be neglected, Cn can be

connected to VCC or GND. Bitwise logic

means that each numbered bit of the output is

dependent on the logic function acted on the

two bits of the same significance in input A or

input B. An interesting property to note about

the function table is that the inverse of the bits

within a function selection results in a inverse

operation. Such as function 0001, which is

NOT(A OR B), the inverse of this function is

1110, which is (A OR B). Although some

functions seem quite complex and unneeded,

they could be quite useful in practice.

Procedure

Gather all the components listed in the parts

table and lay them out. Insert the first LED

pargraph into a breadboard, followed by the 16

pin DIP switch, the 8 pin DIP switch, the 181

ALU IC, the second DIP switch, and finally

the second bargraph, ensuring they are each

separated by at least a single row on the

breadboard. Connect pins 10-14 and 17-20 of

the first bargraph to GND, each set via a 10K

5 pin bussed resistor network. Do the same for

pins 7-10 of the second bargraph. Use the 1K 8 bin bussed resistor network to create pull down

Arithmetic Function table (without carry)

Logic Function table

Parts Table

Component Quantity

SN74LS181 ALU IC 1

16 pin DIP switch 1

8 pin DIP switch 2

10 LED bargraph 2

1 K fixed resistor 7

1 K 8 bin resistor network 1

10 K 5 pin resistor network 3

Wires Assorted*

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 97

resistors for the 8 pin DIP switch, and use the 1K fixed resistors to create pull down resistors to

the remaining DIP switch pins. Connect the remaining leads of the 3 DIP switches to VCC.

Connect pin 12 and pin 24 of the ALU to VCC and GND respectively. Connect pins 1-4 of the

first DIP switch to pins 1-4 of the first bargraph, these are the A inputs. Connect pins 1-4 of the

DIP first DIP switch to pins A0-A3 of the ALU, where pin 1 corresponds to the most significant

bit (A3). Connect pin 5-8 of the input DIP swtich to pins 7-10 of the first bargraph, and in a

similar fashion, connect the outputs to inputs B0-B3 of the ALU. Connect pins 1-4 of the second

DIP switch to the 4 function control pins, where pin 1 corresponds to S3 and pin 4 coresponds to

S0. Connect pins 1 and 2 of the third DIP switch to the carry in and mode select pin of the ALU

respectively. Finally, connect pins F0-F3 to pins 1-4 of the second bargraph.
Fritzing diagram

Reflection

When the class was handed our assignments for what IC we were to present on, I learned that I

was responsible for the ALU, one of the more complex IC’s used in the CHUMP. Mr.D’Arcy

handed me some IC’s to tinker with on the weekend before my presentation, so I began to test

and learn about the IC. After multiple more hours of research and probing the Arithmetic Logic

Unit, I had finally begun to understandall the capabilities of the IC. I introduced the IC to my

classmates, and offered as much help and resources as I could so they would finish their project

as well. Although I encountered some issues wiring the final circuit, and had to troubleshoot for

a while, I solved the problem and continued to work away on my DER.

Media

https://www.youtube.com/watch?v=IkSzYp3VTkY
Wired Circuit

https://www.youtube.com/watch?v=IkSzYp3VTkY

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 98

Part 4: EEPROM

Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html - EEPROM

https://www.youtube.com/watch?v=BA12Z7gQ4P0

https://www.youtube.com/watch?v=K88pgWhEb1M&t=305s

Purpose

The purpose of this project is to wire a simple

circuit and develop code to write and read 8 bit

values from the first 16 EEPROM addresses.

EEPROM stands for Electrically Eraseable

Programmable Read-Only Memory, this

version of Programmable Read-Only Memory

is used in this project, so that the values in each

address can be erased and changed using digital

pins from an Arduino Nano. The AT28C16

EEPROM offers a 16K memory organized as

2048 words by 8 bits. In order to provide 2048

separate addresses (0-2047) 11 address pins are

used to designate which specific address will be

used. Since the CHUMP is a 4-bit computer,

only 4 address pins are needed, and the

remaining 7 can be tied to GND. As well within

the 24 pin DIP package is 8 data Input Output

(I/O) pins, depending on the state of the output

enable pin and write enable pins, the 8 I/O pins

can either act as an ouput pin showing what is

in the selected address, or as an input pin

allowing the user to write to the specified

address. It is important to note that the enable

pins are active low pins, so they must be

connected to GND in order for them to activate.

Through using 14 pins on the Arduino Nano to

control 4 address pins, 8 I/O pins, as well as the /WE and /OE pins, a code will be developed to

write the previously written CHUMP: code into respective addresses within the EEPROM and

then read those values, viewing the entire process in the serial monitor.

Procedure

Place the AT28C16 EEPROM and the Arduino

Nano into a breadboard. Connect the 5V pin from

the Arduino to the power rail and the GND pin to

the GND rail. Connect pins 12 and 24 of the

EEPROM to VCC and GND respectively.

Connect pins A4-A11 to GND. Connect the /CE pin to GND. Connect pins A0-A3 of the

EEPROM to pins A0-A3 of the Arduino. Connect I/O pins 0-7 to pins 2-9 on the Arduino.

AT28C16 EEPROM pinout

Parts Table

Component Quantity

AT28C16 EEPROM 1

Wires Assorted*

Arduino Nano 1

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#EEPROM
https://www.youtube.com/watch?v=BA12Z7gQ4P0
https://www.youtube.com/watch?v=K88pgWhEb1M&t=305s

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 99

Connect the /CE and /WE pins to pins 10 and 11 of the Arduino. Open the Arduino IDE and

create a new sketch entitled “WriteEEPROM”. Within an array, place the binary machine

instructions from the previously written CHUMP: Code. Define each of the address pins, I/O

pins, and enable pins. Set the address pins to output. Print the hex values that are to be written to

EEPROM. To write to EEPROM, write the /OE pin low, and the /WE pin high. Create a for

loop that declares all of the I/O pins for output. Create a bit mask that AND’s bit 8 with a 1,

outputs that value to the corresponding I/O pin within the for loop, then shift the data left 1

position. This means that the outptus of the I/O pins will reflect the binary value. To read

EEPROM, this process is basically inverted, the /WE pin is written high and the /OE pin is

written low. Write a for loop that moves throughout the I/O pins and shifts the value of that

pin to its corresponding bit position, then writing that value to the serial monitor.

Code
// PROJECT :AT28C16Write

// PURPOSE :Writes data to the AT28C16 (2Kx8) EEPROM IC

// COURSE :ICS4U

// AUTHOR :B. Eater. adapted for ACES CHUMP use by C. D'Arcy

// DATE :2019 11 13-16

// MCU :Nano/328

// STATUS :Working

// REFERENCE:B. Eater Github...

// :https://github.com/beneater/eeprom-

programmer/blob/master/eeprom-

// programmer/eeprom-programmer.ino

// REFERENCE:B. Eater Videos

// 1. Using an EEPROM to replace combinational logic

// https://www.youtube.com/watch?v=BA12Z7gQ4P0&feature=emb_logo

// 2. Build an Arduino EEPROM programmer

// https://www.youtube.com/watch?v=K88pgWhEb1M&feature=emb_logo

//~~

// CHUMP Basic Program Example

//00000101 LOAD 5 ;accum = 5; pc++;

//01100001 STORETO 1 ;mem[1]<-accum; pc++;

//10000010 READ 2 ;addr<-2; pc++;

//00010000 LOAD IT ;accum = mem[2]; pc++;

//10000001 READ 1 ;addr<-1; pc++;

//00110000 ADD IT ;accum+mem[1]; pc++;

//01100010 STORETO. ;2 mem[2]<-accum; pc++;

//10000001 READ 1 ;addr<-1; pc++;

//00010000 LOAD IT ;accum = mem[1]; pc++;

//01000001 SUBTRACT 1 ;accum--; pc++

//11001100 IFZERO 12 ;accum==0?pc=12; pc++;

//10100001 GOTO 1 ;pc<-0001

//~~

// populate array below with machine instructions above

byte code [] = {

 0b00000101,

 0b01100001,

 0b10000010,

 0b00010000,

 0b10000001,

 0b00110000,

 0b01100010,

 0b10000001,

 0b00010000,

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 100

 0b01000001,

 0b11001100,

 0b10100001

};

#define PROG_SIZE sizeof(code)

#define EEPROM_D0 2

#define EEPROM_D7 9

#define EEPROM_OE 10

#define EEPROM_WE 11

#define EEPROM_A0 14

#define EEPROM_A3 17

void setup() {

for (uint8_t pin = EEPROM_A3; pin >= EEPROM_A0; pin--) {

 pinMode(pin, OUTPUT);

 }

 digitalWrite(EEPROM_WE, HIGH);

 pinMode(EEPROM_WE, OUTPUT);

 digitalWrite(EEPROM_OE, HIGH);

 pinMode(EEPROM_OE, OUTPUT);

 Serial.begin(9600);

 Serial.println("Here's the data to be flashed to EEPROM...");

 for (int address = 0; address < PROG_SIZE; address++) {

 Serial.print(code[address], HEX);

 Serial.print(" ");

 }

 Serial.println();

 // Write the code to EEPROM...

 Serial.println("Writing " + String(PROG_SIZE) + " bytes of code to

EEPROM...");

 for (int address = 0; address < PROG_SIZE; address++) {

 writeEEPROM(address, code[address]);

 }

 Serial.println("Done");

 // Confirm the write by reading the code in the serial monitor

 Serial.println("Reading EEPROM");

 printContents();

}

// Read the contents of the EEPROM and print them to the serial monitor.

void printContents() {

 for (int address = 0; address < PROG_SIZE; address++) {

 Serial.println(readEEPROM(address), HEX);

 }

}

// Output the address bits and outputEnable signal using shift registers.

void setAddress(int address) {

 for (int pin = EEPROM_A3; pin >= EEPROM_A0; pin--) {

 digitalWrite(pin, address & 0x08);

 address <<= 1; //destructive

 }

}

byte readEEPROM(int address) {

 digitalWrite(EEPROM_WE, HIGH);

 for (int pin = EEPROM_D7; pin >= EEPROM_D0; pin--) {

 pinMode(pin, INPUT);

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 101

 }

 byte value = 0;

 setAddress(address);

 digitalWrite(EEPROM_OE, LOW);

 delayMicroseconds(1);

 digitalWrite(EEPROM_OE, HIGH);

 for (int pin = EEPROM_D7; pin >= EEPROM_D0; pin--) {

 Serial.print(digitalRead(pin));

 value = (value << 1) + digitalRead(pin);

 }

 Serial.print(" ");

 return value;

}

// Write a byte to the EEPROM at the specified address.

void writeEEPROM(int address, byte data) {

 digitalWrite(EEPROM_OE, LOW);

 digitalWrite(EEPROM_WE, HIGH);

 Serial.println("[" + String(address) + "]" + String(code[address], HEX));

 setAddress(address);

 digitalWrite(EEPROM_OE, HIGH);

 //prepare to write the data...

 for (int pin = EEPROM_D0; pin <= EEPROM_D7; pin++) {

 pinMode(pin, OUTPUT);

 }

 //write the data...

 for (int pin = EEPROM_D7; pin >= EEPROM_D0; pin--) {

 digitalWrite(pin, data & 0x80);

 data <<= 1; //destructive....

 }

 digitalWrite(EEPROM_WE, LOW);

 delayMicroseconds(1);

 digitalWrite(EEPROM_WE, HIGH);

 delay(10);

}

void loop() {

 // nothing left to do...

}

Reflection

This was not an extremely difficult project to complete. We were given the code in class, and

only needed to make simple adjustments to create a functioning circuit. The wiring was intuitive

and simple, all the connections coming out of the AT28C16 EEPROM IC either went to a rail or

to the Arduino. The IC itself is quite interesting, how it is able to store that much data, and how

specific the timing must be to utilize the chip.

Media

https://www.youtube.com/watch?v=rTyUNsrv6sM

https://www.youtube.com/watch?v=rTyUNsrv6sM

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 102

Wired circuit

Part 5: Program Counter

Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html - ProgramCounter

Purpose

The purpose of this section of the CHUMP

build to wire the clock pulse from the Eater

clock circuit into the SN74LS161 IC, creating a

4-bit counter to run through the previously

written CHUMP program. The SN74LS161

synchronus counter is a 4-bit counter that

increments by 1 with each clock pulse,

outputting the 4-bit value across outputs QA-

QD. Once confirming that the program counter

portion of the CHUMP build works by placing

4 LED’s across outputs QA-QD, the outputs will

be wired to address pins A0-A3 of the program

EEPROM, which was flashed with the CHUMP

code in the previous section. This will create a

circuit to run through the first 16 addresses of

the AT28C16 EEPROM IC.

SN74LS161 Pinout

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#ProgramCounter

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 103

Procedure

Place the SN74LS161 synchronus 4-bit counter

IC into the breadboard. Connect the final clock

output from the Eater clock build to the

unconnected ground rail at the top of the

breadboard, and connect this clock pulse to the

CLK pin of the IC. Open the ACES TTL

processor instruction word document and scroll to the section on the SN74LS161 IC. Since it is

not required to clear the output of the IC, the clear (/CLR) pin must be tied high. The enable P

and enable T pins, are also to be wired high. Connect pins 8 and 16 to VCC and GND

respectively. The /LOAD pin of the IC, when wired low, will output the values placed on inputs

A-D to pins QA-QD; therefor, the load pin will be tied high to select synchronous counting. Also,

there is the ripple carry out pin, which is not needed in this project, this pin is used to connect

multiple synchronous counter IC’s together in order to achieve counting with more than 4 bits.

On the EEPROM IC, tie addresses 4-11 to GND, tie the /WE pin high, the /OE pin low, and the

/CE pin low.

Media

https://www.youtube.com/watch?v=uF9kMlv5h88
Complete circuit with Eater clock build

Parts Table

Component Quantity

SN74LS161 4-bit counter IC 1

AT28C16 EEPROM IC 1

5mm rectangular LED 12

Wires Assorted*

https://www.youtube.com/watch?v=uF9kMlv5h88

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 104

Program counter EEPROM circuit

Reflection

Upon reflection, this iteration of the CHUMP build was not particularly more difficult than the

previous ones. I understood the concept of the circuit immediately once it was explained, and see

how this new IC fits into the CHUMP circuit. I completed the wiring for this project in one of

my spares during the week, and after a minor inconvenience; getting the bit orders of the outputs

and inputs on the counter and EEPROM IC a little confused, the build was complete. In

conclusion, overall this has been a rewarding process conceptually, but too many concepts from

other courses mixed in with this project make it quite hard to retain a work ethic and focus.

Part 6: Processor

Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#Executable

Purpose

The purpose of this stage in the CHUMP build is to utilize the knowledge and experience the

class has in each persons respective IC’s, as well as share the knowledge gained in the previous

steps of the build to hopefully arrive at a working CHUMP. The purpose of the CHUMP is to

take the code from the previously flashed program EEPROM, and use those program codes to

dictate what control codes (stemming from the op-codes) will be sent across the build to perform

specific functions. Ultimately the CHUMP processor should be able to run the code written in

CHUMP part 1, while the outputs of certain necessary pieces within the build can be visualized

using 3mm LED’s. Once confirming that the build works with the code already written, it is

possible to reflash the program EEPROM with more recent iterations of code written in

chumpanese, to test the full capabilities of the processor within the 4-bit constraint. This is a very

general overview of the CHUMP final build, the detailed purpose of each essential IC within the

build will be listed below.

http://darcy.rsgc.on.ca/ACES/TEI4M/4BitComputer/index.html#Executable

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 105

Multiplexor

The 74LS157 multiplexor(or selector) IC acts

as a way to choose whether a memory or

constant is loaded into the CHUMP. There is 4

sets of inputs to the multiplexor (A1-B1, A2-B2,

etc), and each of these input combinations is

fed to a single output (Y1-Y4). Either the A or B

inputs are fed to the outputs depending on the

state of the select pin (pin 1). If pin 1 is set

high, then the Y outputs mirror the B inputs,

whereas if the select pin is low, the Y outputs

mirror the A inputs. By feeding the lower

nibble of the program EEPROM IO pins into

input A, the inverted ram ouptuts into input B,

and the select pin to program EEPROM IO4,

the multiplexor is able to select between a

constant or memory output depending on the

state of bit 4 of the program code.

ALU

The purpose of the ALU within the CHUMP

processor is to act as the mathematical heart of

the build. The ALU gathers it’s B inputs from

the output of the multiplexor(selector), and

performs the specified operation, whether

arithmetic or logic. The outputs from the ALU

are fed through the accumulator and into the

Ram IC. The ALU is used to perform primarily

addition, and subtraction, as well as the output

F = B function to load a value from the

multiplexor into the accumulator. At the core

the ALU is ultimately responsible for a large

proportion of the CHUMP’s functionality,

which is furthered by the fact that 6 of the 8

control code bits are used to dictate the function

select, mode select and carry in pin of the ALU.

RAM

The LS189 Random Access Memory IC serves

to hold the memory values for the CHUMP.

The ram holds 16 addresses of 4 bit values, that

can be written to or read from depending on the

state of the WE pin of the IC. The address pins

(A0-A3) and WE pin are dictated by the outputs

of the address register, and the ram inputs(D1-

D4) are controlled by the accumulator outputs.

The inverted ram outputs are finally fed into the

B inputs of the multiplexor.

74LS157 Multiplexor pinout

CHUMP datapath

74LS189 RAM pinout

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 106

Address register

The purpose of the address register in the

CHUMP build is to control what addresses of

RAM are being accessed, as well as the state of

the R/W pin of the RAM. The address register

takes its inputs from the multiplexor outputs,

and on the next clock pulse pushes these values

to the RAM, dictating what address is being

read from/written to.

Program/Control EEPROM

The first 15 RAM addresses of the program

EEPROM house the previously written and

flashed CHUMP code. The written code is

flashed into each individual address, incrementing the address by 1 each time per line of code.

Within the build, the program EEPROMs input comes from the program counter outputs. The

upper nibble of the IO output pins from the program EEPROM are fed into the address pins of

the control EEPROM, as each op-code will correspond to a specific address in control EEPROM

to perform that specified function. The lower nibble output is fed into the A inputs of the

multiplexor, and finally, IO4 is connected to the select pin of the multiplexor, selecting the lower

nibble output if the bit is a 0 (constant) and selecting a memory command if the bit it high. The

IO pins of the control EEPROM are spread across the entirety of the CHUMP build, and each 8

bit value housed in a EEPROM address will perform a very specific function on the remaining

CHUMP components. The control lines are responsible for dictating the ALU functions (S0-S3),

the ALU mode select (M) and carry in pins (CN), the accumulator enable (E) pin and finally the

RAM WE pin. The control and program EEPROM are responsible for controlling the entire

datapath of the CHUMP, and extremely crucial in the final steps of the build.

Accumulator

The purpose of the accumulator is to

accumulate the outputs from the ALU (F0-F3)

and on the next clock cycle, these inputs will be

transferred to the outputs, similar to the address

register. The D pins are the input pins to the

accumulator, while the Q pins are the output

pins. The enable input pin (E) is connected to

control EEPROM through one of the control

wires and the CP pin connects to the clock

pulse.

Program Counter

The program counter functions to increment it’s

output after each clock cycle; this is useful to

increment the code in program EEPROM line

by line. The only exeption to the incrementing

output is with a GOTO or IFZERO command.

74LS174 Hex Flip-Flop pinout

SN74LS377 8-bit register pinout

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 107

Procedure

In order to maintain some clarity in wiring and to

ease debugging, a certain wire color will be

chosen to pertain to certain datapaths. In this

CHUMP build the colors are as follows, Blue:

Multiplexor and ALU outputs, Yellow:

Multiplexor/Address register inputs, Black:

Control EEPROM address inputs and IO outputs,

RED: Clock input, Grey: RAM inputs and

address register outputs, Green: bitwise logic for

jump and Z bit. The CHUMP wiring is fairly

complex, but as long as each connection is

marked properly and easy to recognize,

debugging should (hopefully) not be as difficult.

With the exeption of ground and VCC

connections, all important connections are marked on the pinout diagrams below. Important

things to note are: include pull up resistors on the RAM outputs and A=B pin of the ALU of

resistance 1K or greater. The RAM outputs must pass through the SN74LS04 inverter IC to the

B inputs of the multiplexor, or else the read memory values will be inverted. The remaining

address pins on both the EEPROMs must be tied to GND. The /CS pins on all the required IC’s

must be tied to GND. The /OE pin of the EEPROMs are to be Grounded, and the /WE pin must

be tied high. In order to create the bitwise logic for the GOTO and IFZERO commands, NAND

the IO7 and IO6 outputs of the program EEPROM, then feed the output into the input of a new

NAND gate. Connect the input’s of the second NAND gate together to create a makeshift AND

gate. Connect the output of the makeshift AND gate to the input of a new NAND gate, with the

other input being the A=B pin of the ALU. Finally tie this output to the load pin of the program

counter.
Connections

Parts Table

Component Quantity

Ben Eater clock circuit 1

AT28C16 EEPROM IC 2

74LS157 Multiplexor 1

74LS174 Hex Flip-Flop 1

SN74LS377 8-bit register 1

74LS189 RAM 1

SN74LS181 ALU 1

SN74LS161 4-bit counter 1

SN74LS00N NAND IC 1

SN74LS04 NOT IC 1

3mm LED Assorted*

Wires Assorted*

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 108

Reflection

This was one of the most rewarding projects of my ACES, or even high school career. Just after

the short ISP presentations, and before we started investigating the CHUMP, Mr. D’Arcy came

up to me; telling me that he knows I am more of a “design guy”, but it is crucial that I stay

involved in the CHUMP process despite my interest in domains other than hardware. Although I

can attest to be sort of a “design guy”, this project was a great way to further my hardware skill.

Typically with design or software, you get sort of an instant gratification with each step of the

process working. For me the CHUMP was extremely binary (pun intended), either it works and I

can feel content with myself, or it doesn’t and I’ll spend the next weeks beating myself up over

what I consider to be a failure. Needless to say, I poured hours of time into finalizing my

CHUMP build. I spent period 1 and period 4 spares, free Saturdays, late nights in the DES trying

to understand each section of the CHUMP: and I learned a considerable amount. I spent enough

time on my CHUMP that I became sort of a CHUMP TA, answering questions from the entirety

of the grade 12 ACES class at every opportunity they could ask. Overall, I couldn’t feel happier

or more rewarded by the outcome of this project. I went from the design kid who was anticipated

to spend the CHUMP periods on his computer designing in Fusion 360, to the kid so involved in

his CHUMP he would rather come to the last day of the school year at 7:00 even with a period 1

spare, just to see the multitude of effort he put in pay off.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 109

Media

https://www.youtube.com/watch?v=gL__OgbNLjg
CHUMP side profile

CHUMP front view

CHUMP final wiring

https://www.youtube.com/watch?v=gL__OgbNLjg

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 110

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 111

Project 20. Dolgin Development Platform
Part 1: Assembly

Reference

Project 13. Legacy PCB/Appliance

http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html#assembly

Purpose

The purpose of this project is to solder and

begin testing a refined version of the previously

created Dolgin Development Board, now

named the Dolgin Development Platform. The

core of the board remains the same (see project

13 for details), with 2 8 pin female headers for

appliance connections, and a 2x3 ISP header

(now shrouded in the case), as well as the 5V

regulation circuit and AtTiny24/44/84 DIP-14

solder pads. Most of the DDP redesign has

come in the form of the power supply to the

board. Since the ATMEL ICE does not supply

voltage to the board, multiple options are available for the user. Either the sparkfun pocket

programmer can be used, a 5V micro usb cable can be used to supply power once code is

flashed, or the board can run using a regulated 5V input from a DC barrel jack.

Procedure

Open the ziplock bag containing the components

for the DDP board and case, and lay them out

along a silicon pad. Solder the components laying

directly on the board first; beginning with the 14

pin IC socket, then continuing to the USB

connector, 5V regulator and filtering capacitors,

and the two 1x8 female headers. Solder a red wire

to the positive terminal of the power jack and

black wire to the negative terminal, being sure to

heat shrink the connections afterwards. Insert the

jack into the DDP case, then solder the red and

black leads to VIN and GND pins respectively.

Insert the 2x3 female ISP header into the

designated slot in the DDP case, then place the

PCB over top to solder the connections. Finish by

screwing the board into the case using the given mounting screws. Follow the same process as

previously listed in project 13 to upload a new sketch to the device and confirm its functionality.

DDP PCB & Case

Parts Table

Component Quantity

ATtiny84 1

14 pin IC socket 1

USB type B connector 1

5V regulator 1

1x8 female header 2

10 F capacitor 1

1 F capacitor 1

Power jack 1

Red & black hookup wire 2

2x3 shrouded ISP header 1

DDP v5 PCB 1

M3 screws 4

DDP case 1

http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html#assembly

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 112

Media

https://www.youtube.com/watch?v=vR8WSHAPsVg
DDP components

Soldered DDP board

Reflection

So here we are, turns out my legacy PCB

would not only leave my legacy in the DES,

but would also come back for me and my peers

in our Grade 12 year. I have to admit, there is a

sense of accomplishment seeing your name

mentioned frequently across the ACES

website, not to mention a series of projects all

beginning with your last name, it is truly

incredible. Upon reflection to the assembly of

this board, nothing new really happened. I have

soldered 4 variations of this board multiple

times, so there were no issues in understanding

orientations or the purpose of any aspect of the

board, the only thing that differed this

assemply from the previous is that my peers are

completing it along side me. Being able to offer my knowledge towards another ACES project

proves again to me that even though my interests are heavily design related, I am still capable of

helping with software and hardware

DDP board encased

https://www.youtube.com/watch?v=vR8WSHAPsVg

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 113

Part 2: Testing

Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html - testing

Purpose

The purpose of this project is to refresh some

forgotten high-level coding skills through

various media such as the shaffer traffic light,

morland bargraph, and various sensors to

generate data that can be displayed. After

multiple months of CHUMPANESE and

hardware focus, it is important to remember

some high-level techniques before starting

some more assembly. The multiple coding

goals of this project entail: demonstrating the

blink sketch, traffic light, a simple bargraph

animation, a fading effect using the OE pin of

the morland bargraph, an animation to represent analog input data from a TMP36 temperature

sensor, finalized by a display for a sensor of ones choosing. To ease with software development,

the pinout of the DDP has been carfully thought of. Beginning with the breakout pins on the left

side of the board, which break GND and 5V pins in such a way that the bargraph can plug in as

an appliance, without having to source or sync voltage from a digital pin on the board, freeing

the remaining digital pins to perfrom other tasks. On the other side of the board is another 5V

and GND pin, as well as 6 analog/digital pins of ascending order(0-5).

Reflection

In reflection, this was a fairly difficult and

stressful project to complete. I had a lot of other

things to work on this week, and I just

procrastinated by coding and working on

hardware. I am upset that I couldn’t get the

joystick or temperature sensor to work

perfectly, but believe I should be proud of the

effort I put in, and my reluctance to choose an

easier sensor rather than try and finish what I

started. The frustration came from the fact that

the code worked on my Arduino board, but not

my DDP. Overall I would still consider this

section of the DDP a success, because I got

some of my code to work well, and I wrote it in

concise and modular sections to the best of my

ability. I am slowly becoming more acclimated

to the software world.

TMP36 Temperature sensor pinout

Morland Bargraph v3

http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html#testing

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 114

Procedure

Plug the traffic light into 3 digital pins of the DDP

as an appliance. Develop updated code that uses

an array housing the 3 used pins, and a for

loop that changes which LED is on based off the

output from the 3 cells in the array. Plug the

morland bargraph into the DDP, so that the 5V

and GND pins of both boards match. Code must

be developed to create animations for: a simple

animation on the LED bargraph, use OE pins to create a breathing affect on the bargaph, to

display input from a joystick on the bargraph, and finally to display the input data from a TMP36

temperature sensor on the bargraph. The entire left side of the PCB is used for the morland

bargraph (it blocks the remaining two pins), so the left side is the only available for sensor input

data. Unfortunately due to the limitated pin numbers on the DDP, only the joystick and traffic

light will be used for the combined code, and the TMP36 will have a separate block of code.

Plug the traffic light into pins 3, 4, and 5, and the joystick into GND, VCC, and pins 0-2.

Combine the code written for each individual module into a single sketch, changing the

animation from either button or joystick input.

Code
Code for traffic light, joystick, and bargraph

#define clk 10

#define data 8

#define latch 7

#define OE 6

#define SPEED 5

#define yVal 1

#define xVal 0

#define BUTTON 3

#define COUNT 2000

uint8_t LED[] = { 3, 4, 5 };

uint8_t numLED = sizeof(LED);

uint8_t value [] = { 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF};

uint8_t animation = 0;

uint8_t light = 1;

uint8_t delta = 1;

uint16_t pos = 0;

uint16_t brightness = 0;

uint8_t increment = 0;

uint8_t whatAnimation = 0;

void setup() {

 for (uint8_t i = clk; i > OE; i--) {

 pinMode(i, OUTPUT);

 }

 for (uint8_t x = 0; x < numLED; x++) {

 pinMode(LED[x], OUTPUT);

 }

}

void animation1() { //Breathing bargraph

 delay(SPEED);

 digitalWrite(latch, LOW);

 shiftOut(data, clk, MSBFIRST, value[animation]);

 digitalWrite(latch, HIGH);

 analogWrite(OE, light);

 light = light + delta;

Parts Table

Part Quantity

DDP 1

Morland Bargraph 1

Shaffer traffic light 1

Sparkfun joystick 1

TMP36 temperature sensor 1

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 115

 if (light == 255 || light == 0)

 {

 delta = -delta;

 }

 if (light == 0) {

 animation == 7 ? animation = 0 : animation++;

 brightness++;

 }

}

void adjustBrightness() {

 brightness = analogRead(yVal);

 analogWrite(OE, brightness);

}

void animation2() { //traffic light

 for (uint8_t i = 0; i < numLED; i++) {

 digitalWrite(LED[i], HIGH);

 delay(COUNT);

 digitalWrite(LED[i], LOW);

 }

}

void animation3() { //Joystick animation

 pos = analogRead(xVal);

 while (pos > 900) {

 for (uint8_t x = increment; x < 7; x++) {

 digitalWrite(latch, LOW);

 shiftOut(data, clk, LSBFIRST, value[x]);

 digitalWrite(latch, HIGH);

 increment = x;

 adjustBrightness();

 }

 } while (pos < 300) {

 for (uint8_t x = increment; x > 0; x--) {

 digitalWrite(latch, LOW);

 shiftOut(data, clk, LSBFIRST, value[x]);

 digitalWrite(latch, HIGH);

 increment = x;

 adjustBrightness();

 }

 }

}

void loop() {

 if (digitalRead(BUTTON)) {

 whatAnimation++;

 }

 switch (whatAnimation % 3) {

 case 0:

 animation1();

 break;

 case 1:

 animation2();

 break;

 case 2:

 animation3();

 break;

 }

}

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 116

Code for temperature sensor

#define clk 10

#define data 8

#define latch 7

#define OE 6

#define SPEED 5

uint16_t temp = 0;

uint8_t value [] = { 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF};

void setup() {

 for (uint8_t i = clk; i > OE; i--) {

 pinMode(i, OUTPUT);

 }

}

void loop() {

 temp = analogRead(A0);

 temp = constrain(temp, 140, 170); //≈ 20 – 30 ˙C

 digitalWrite(latch, LOW);

 shiftOut(data, clk, LSBFIRST, temp);

 digitalWrite(latch, HIGH);

 delay(50);

}

Media

https://www.youtube.com/watch?v=nLkLmkLTCUQ

ATtiny pinout

DDP with morland bargraph

DDP with traffic light

https://www.youtube.com/watch?v=nLkLmkLTCUQ

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 117

Project 21. ADC shield
Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html - adc

Purpose

The purpose of this project is to solder and

develop code for the Analog to Digital

Conversion (ADC) shield for the DDP. The

board uses 4 NPN transistors to ground the CC

pin of the now-obselete LA-301VL, a 2 mm

pitch seven-segment display. Through the use

of a shift register to control the segment pins of

each display, and the transistors to only allow a

single one to ground at a time, a 4 digit analog-

read value can be displayed (0-1023). The

analog input comes from the 2×3 female

header found at the top of the shield, which

offers 2 5V, Analog in, and GND headers

respectively. This arrangement allows for the

insertion of various devices such as a trimpot,

TMP36 sensor, or even a voltage divider using

a LDR and a fixed resistor.

In order to create a POV scrolling effect

across each display to show the analog read

value, some (hopefully register level) code has

to be developed to smooth the input data and

display the ADC value on the displays, while inhibiting the display of leading zeros within the 4

digit number. In conclusion this project serves to refresh some through-hole soldering skills and

develop further understanding of register level coding, and as an added bonus helping

Mr.D’Arcy stock up on soldered shields for next year.

Procedure
Open the attached component bag and neatly lay

out the parts. Start by inserting a single LA-

301VL display, confirming its orientation using

the provided EAGLE board sketch. Hold the

display in and solder the leads on the side

opposite to the next display to be added. Insert the

second display and solder the remaining side of

the first display. Repeat until all seven-segment

displays are soldered in place. Solder the

remaining components in place, beginning with the isolated

ADC shield EAGLE board

Parts Table

Component Quantity

DDP 1

SN74HC595 IC 1

LA-301VL CC display 4

3904 NPN transistor 4

4 pin 1 K ISO RN 2

8 pin 220  ISO RN 2

2×3 Female header 1

http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html#adc

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 118

resistor networks (orientation does not matter),

and continuing to the femal header, transistors

(orientation does matter), 16 pin chip seat and

finally the 1x8 male headers. Create a blank

Arduino sketch entitiled “ADC_Shield” and

save it. Using the EAGLE schematic and board,

create pin definitions matching the hardware on

the board to the pinout of the DDP. Create an

array housing a series of 8 bit values that will

create the numbers 0-9 on the displays. Begin

by using high level code to display a single 0

onto the display, gradually working up into

creating a POV 2 digit number. Using the

previous high level code, develop register level

code that employs a getAverage()function to

average the previous 100 readings in order to

smooth the data, a register level shiftOut()

command that uses register level manipulation of the clock, data, and latch bits, and finally a for

loop that cuts off the displayed leading zeros.

Code

//Project: ADC Shield code to inhibit the display leading zeros, using a variety of

register level commands.

//Author: Josh Dolgin

//Date: 20/02/12

//Status: Working

#define NUMDIGITS 4 //The number of digits of the number to be displayed

#define CLK 1<<PORTA7 //Shift register clock pin

#define LATCH 1<<PORTA6 //Shift register latch pin

#define DATA 1<<PORTA5 //Shift register data pin

#define THOUSANDS 1<<PORTA1 //Pin to turn on thousands digit

#define HUNDREDS 1<<PORTA2 //Pin to turn on hundreds digit

#define TENS 1<<PORTA3 //Pin to turn on tend digit

#define ONES 1<<PORTA4//Pin to turn on ones digit

#define AIN A0 //Analog input pin

#define NUMELEMENTS 100 //decide on number of averaged values

uint16_t history[NUMELEMENTS];

uint8_t numbers[] = {0b11111100, 0b01100000, 0b11011010, 0b11110010, 0b01100110,

0b10110110, 0b10111110, 0b11100000, 0b11111110, 0b11110110}; //QA of SR is DP, QB-QH

is GSEG - ASEG

uint8_t pins[] = {ONES, TENS, HUNDREDS, THOUSANDS}; //Array of pins to display the

digits

void setup() {

 DDRA = CLK | LATCH | DATA | ONES | TENS | HUNDREDS | THOUSANDS; //Declaring pins

for output

 PORTA = 0; //Making sure all pins are off

}

void shiftout(uint8_t order, uint8_t value) {

 uint8_t mask = order ? 0x80 : 0x01; // if non-zero (1-255), the mask changes based

off the order

 for (uint8_t i = 0; i < 8; i++) { // 8 times, setting each bit of data

 PORTA &= ~CLK; //Clock pin low

LA-301VL seven segment display

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 119

 if (value & mask)

 PORTA |= DATA; //If that bit is set, data pin high.

 else

 PORTA &= ~DATA;

 PORTA |= CLK; //Data gets shifted in on rising edge

 value = order ? value << 1 : value>>1; //Moving value into the mask

 }

}

uint16_t getAverage(uint16_t value) {

 uint32_t total = 0;

 for (uint8_t i = 0; i < NUMELEMENTS - 1; i++) {

 history[i + 1] = history[i];

 total += history[i];

 }

 history[0] = value;

 return (total + value) / NUMELEMENTS;

}

void loop() {

 uint16_t reading = getAverage(analogRead(AIN)); //Get a value

 for (uint8_t x = 0; x < NUMDIGITS; x++) {

 PORTA &= ~LATCH; //Latch low

 shiftout(1, numbers[reading % 10]); //1 is MSBFIRST for shiftOut

 PORTA |= LATCH; //Latch high

 PORTA |= pins[x]; //Ones bit first, counting up to thousands

 delay(2);

 PORTA &= ~pins[x]; //Turn off the bit

 Reading /= 10; //Moving to the next digit

 if (reading == 0)

 x = NUMDIGITS; //If there is nothing left to display,

 }

}

Reflection

In reflection I believe that this was a highly successful project for me. Once I was done soldering

my board I immediately went into the EAGLE schematic and board to ensure that all my pin

declarations were correct, because without the correct pins there was no chance my code would

work. After beginning my ADC coding in high level code, I felt unfulfilled seeing my 100 lines

of arithmetic and if statements to display the correct value. Instead I began to modularize and

simplify my code to a compact register level display of what I have learned so far. Although I

struggled initially with setting and clearing bits, eventually I got the hang of manipulating

individual bits in the data direction and port registers. The end result is a piece of code I consider

to be one of the favourite pieces I have written to date, a display of my code progression in

second term. Overall it has been extremely interesting to see the effect of how pushing myself to

understand influences my domain preferences. I started the year in the design corner of the

triangle, and gradually have been making my way to the center through advanced hardware

development in the CHUMP, and new software techniques for the DDP.

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 120

Media

https://www.youtube.com/watch?v=G9IsNfSlmPk

Soldered top of PCB

Soldered bottom of PCB

Working board

https://www.youtube.com/watch?v=G9IsNfSlmPk

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 121

Project 22. Intersection Shield
Purpose
The purpose of the intersection shield is to

mimic a city intersection, utilizing the same

LA-301VL 2 mm pitch seven-segment displays

as the previous ADC shield project to display

the countdown at pedestrian crossings, and 5

mm flat top LEDs to show the traffic light

signals. The project also serves as a reminder to

an extremely useful 4xxx series through hole

IC, the 4511 BCD seven-segment display

driver.

The soldering and coding of the intersection

shield helps ACES with their endeavours in

beginning to implement register level

commands to their high level code, as practice

is helpful in completely understanding bitwise

register manipulation to control the LEDs, NPN

transistors, and 4511 IC.

Theory

4511 seven-segment driver

The 4511 seven-segment driver is a CMOS

logic IC which takes a Binary Coded

Decimal input and outputs the decimal value

of the input to a seven-segment display.

Binary Coded decimal is the typical way in

which a computer stores a decimal number to

be displayed; and through the use of a 4-bit

nibble (D0-D3) a number ranging from 0-15

can be placed on the input of the 4511. This

value is output by the segment pins in the

necessary order to display the decimal

value(0-9) of the BCD input. For instance, if

the BCD input was 0010 (decimal 2), the

4511 would output voltage to segments a, b,

g, e, and d. A value of 1001 (decimal 9)

would output voltage to the a, b, c, g, and f

pins. Therefor, by using the NPN transistors

to control which display is active, and

counting down the BCD input from 7 to 0,

the pedestrian countdown aspect of the

project becomes fairly simple to code.

Cylindrical LED

Digikey Part# 754-1304-ND

4511 pinout

LA-301VL pinout

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 122

Intersection shield

To begin understanding the theory of the

intersection shield, one must first open the

provided EAGLE schematic and board to see

how the pin layout corresponds to the DDP pin

layout. In order to show the pedestrian

countdown timer for a respective intersection,

the CC pin of the seven-segment display must

be tied to ground. The active display can be

altered by applying power to the base pin to

one of the two 3904 NPN transistors on the

board, allowing the output of the 4511 to be

displayed on the seven-segments. 3 of the 4

BCD inputs to the 4511 are connected to bits 0-

2 of the DDP PORTB register (PB0-PB2),

meaning the decimal numbers 0-7 can be

shown.

Since the first 3 bits of the PORTB register are

connected to the first 3 bits of input to the

4511, simply echoing whatever number one

wants to display onto PORTB will output said number to the seven-segment display. The

remaining 6 LEDs are placed into the PORTA register at bits 0-5, these LED’s can be controlled

simply by turning on the corresponding bit in the PORTA register. Ultimately, the goal is to code

the following sequence of events; turn on the green LED for intersection 1 and the red LED of

intersection 2, after a small delay begin counting down from 7 to 0 with 1 second increments on

intersection 1’s display, turn off intersection 1’s green LED and turn on the yellow LED, after a

short delay turn off the yellow LED and turn on the red LED of intersection 1, turn on the green

light for intersection 2 and repeat the whole process, switching the intersection in which the

commands are issued.

Procedure
Open the bag containing all required parts

including the PCB and lay them out neatly on the

silicon soldering mat. Begin by soldering the

tricky 2 mm pitch seven-segment displays, double

checking their orientation against the provided

image and EAGLE board. Solder the resistor

networks and fixed resistors in place, all of which

are non-polarized components. Solder in the NPN

transistors, ensuring they are placed correctly by

comparing the orientation of the part to the silk

screening. Solder the 16 pin chip seat for the 4511

BCD decoder, matching the notch of the chip seat to the silk screening. Solder the flat top LED’s

into place, matching the flat side of the silk screening to the cathode leg of the LED. Finish by

soldering the 1×8 male headers into place.

Intersection shield PCB

Parts Table

Component Quantity

DDP 1

4511 BCD decoder IC 1

LA-301VL CC display 2

3904 NPN transistor 2

6 pin 330  ISO RN 3

8 pin 330  ISO RN 1

1 K fixed resistor 2

5mm flat top LED’s 2 R, 2 G, 2 Y

1×8 male header 2

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 123

Once the board is soldered, open the Arduino IDE

and create a sketch entitled “Intersection.ino”.

Begin by stating the pin declarations, starting at

PA0, going all the way to PA7, and PB0 to PB2.

For ease of coding later, declare each value as

1<<PA_, as this simplifies the bitwise

manipulation of the PORT

registers later on. Continuing, there is two ways to

declare a set of pins for output; the more

complex way being using the sbi command (Set

Bit in I/O register) to set all 11 bits in the 2

Data Direction Registers, but the more simple

way being to use the |= (OR-equals compound

assignment) to OR the current state of the Data

Direction Register with the pins that will be

declared for output. In this case the Data

Direction Registers are not used for any other

commands so the simple equals command

would suffice, but it is good practice to only

manipulate the necessary bits rather than carpet

bomb the registers current bits. When manipulating Data Direction Register or PORT register

bits, only really two compound assignments and one operator are used, those being |= , &=, and

~. As previously stated, OR-ing the current register value with whatever pin must be toggled will

result in only a change of that respective pin. In order to clear a bit in the PORT or Data

Direction register, the &= compound assignment ANDs the current register with the value passed

to it. If the value being passed to the &= command is the inversion (~) of the bit to be turned off,

all the other bits will be set to 1, resulting in the original register being mirrored, with the

exception that the targeted bit is now off. Using this method of manipulating individual register

bits, develop register level code that matches the provided reference video, playing with

combining high level, regester level, and inline assembly commands into a single piece of code.

Memory locations for respective PORTA/B, DDRA/B, and PINA/B registers

Reference

https://mail.rsgc.on.ca/~cdarcy/Datasheets/ATtiny84Summary.pdf

http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html#intersection

Operator Operation

& Bitwise AND

| Bitwise OR

~ Ones compliment

<< Bitshift left

>> Bitshift Right

^ Exclusive OR (XOR)

ATtiny memory for I/O registers

https://mail.rsgc.on.ca/~cdarcy/Datasheets/ATtiny84Summary.pdf
http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html#intersection

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 124

Code
//Project: DDP Intersection shield

//Author: Josh Dolgin

//Date: 20/02/18

//Status: Working

#define B0 1<<PB0 //Binary Input 0 to the 4511

#define B1 1<<PB1 //Binary Input 1 to the 4511

#define B2 1<<PB2 //Binary Input 2 to the 4511

#define COUNT2 1<<PA7 //Base pin for segment 2

#define COUNT1 1<<PA6 //Base pin for segment 1

#define COUNTDOWN 7 //Starting number for countdown

#define NUMINTERSECTIONS 2 //Number of intersections

#define R2 1<<PA5 //Red for intersection 2

#define Y2 1<<PA4 //Yellow for intersection 2

#define G2 1<<PA3 //Green for intersection 2

#define R1 1<<PA2 //Red for intersection 1

#define Y1 1<<PA1 //Yellow for intersection 2

#define G1 1<<PA0 //Green for intersection 2

#define pause 1000 //Interval between changing the LED’s

uint8_t segment[] = {COUNT1, COUNT2};

uint8_t pins[][NUMINTERSECTIONS] = {

 {G1, G2},

 {Y1, Y2},

 {R1, R2},

 {R2, R1},

};

void setup() {

 asm volatile (

 "ser r16 \n" //Sets all bits in register 16

 "out 0x1A, r16 \n" //Sets I/O direction of PortA

 "in r16, 0x17 \n" //Read the current state of PORTB pins

 "ori r16, 0x07 \n" //Mask some for high

 "out 0x17, r16 \n" //Set new I/O states of PORTB

); //DDRA |= 0xFF, DDRB |= 0x07

}

void countDown() {

 for (int8_t i = COUNTDOWN; i > -1; i--) {

 PORTB |= i; // PB0 -> PB2 being used

 delay(1000); //always a 1 second delay each countdown

 PORTB &= ~i; //reverts PORTB

 }

}

void clearIntersection() {

 asm volatile (

 "cbi 0x1B, 0 \n"

 "cbi 0x1B, 1 \n"

 "cbi 0x1B, 2 \n"

 "cbi 0x1B, 3 \n"

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 125

 "cbi 0x1B, 4 \n"

 "cbi 0x1B, 5 \n"

 "cbi 0x1B, 6 \n"

 "cbi 0x1B, 7 \n"

); // Clears PORTA, turns off all the LEDs

}

void loop() {

 for (uint8_t i = 0; i < NUMINTERSECTIONS; i++) {

 PORTA |= pins[3][i] | pins[0][i]; //Turns red on for opposite

intersection and green on for respective intersection

 delay(pause * 2);

 PORTA |= segment[i]; // Turns on corresponding segment

 countDown();

 PORTA &= ~segment[i]; // turn off display

 delay(pause);

 PORTA &= ~pins[0][i]; //Turn off green light

 PORTA |= pins[1][i]; //Yellow

 delay(pause * 3);

 PORTA &= ~pins[1][i];

 PORTA |= pins[2][i]; //Red

 delay(pause * 3);

 clearIntersection();

 }

}

Reflection

This was another highly successful project for me and my code development in register level,

with the addition of basic inline assembly level commands. I began coding this project before

handing in my ADC shield DER, while waiting in a coffee shop for my mom and sister to finish

their gym class. Despite the bewildered expressions of those who paused to look at my computer

screen, most likely pondering what form of gibberish I was writing to control what looks like a

traffic light, I continued in my endeavours to arrive at a piece of code I am proud to have written.

After some looking further into some more inline commands, I tried to experiment with the clear

register (clr) and set register commands (ser), rather than setting/clearing a single bit at a time,

however there maybe an issue with my syntax or use of the function because the new functions

did not work the way I had hoped they would. Regardless, it has overall been a joy to code this

shield, I had been planning it out in my head since Mr. D’Arcy showed me V1 at the end of last

year, and I was able to showcase again how far I have progressed from high-level code similar to

the if-else monstrosity that is ASCII & Buttons. My experience with these two shields has taught

me that in order to greatly simplify the code, the pinouts of my own Legacy shield must be well

thought out in a similar manner.

Media
https://youtu.be/wIf4XwSSVHY

https://youtu.be/wIf4XwSSVHY

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 126

Soldered back of the board

Soldered front of the board

Intersection 1

Intersection 2

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 127

Project 23. The SMD Desktop RTC-Equalizer

Purpose
There is multiple purposes of the Dolgin RTC-

Equalizer board, the primary of which being a

full introduction to the surface mount soldering

world, creating a thin and light board using as

many SMD components as possible. Hopefully,

the Dolgin Desktop RTC-Equalizer will

become a piece of nostalgia for one to leave on

their desk for future years and reminisce of the

good times spent in the DES.

The board is filled with a multitude of

components, beginning with the ATtiny84

mircocontroller, which one has become quite

familiar with through a series of DDP projects.

This microcontroller is responsible for taking

input from two devices, a DS1307 RTC and a

MSGEQ7 audio spectrum analyzer. The

DS1307 Real Time Clock IC is used in the

circuit for the purpose of providing the time to

the viewer, displaying the new time for 10-15s

every time a minute passes. The purpose of the

MSGEQ7 in the circuit is to take audio input

from the Adafruit microphone breakout board and pass these spectrum values through the

ATtiny84 to the MAX7219 LED display driver, which will; in turn, display these values across

the SMD 8×14 LED matrix. In totality, the PCB should display the 7 spectrum values in bars of

2 LED width, showing the new time after each minute passes.

Theory

MSGEQ7

The MSGEQ7 is a seven-band spectrum

equalizer IC, which takes a single audio in line,

and through the manipulation of the reset and

strobe pins, can output 7 analog values

corresponding to the amount of a certain

frequency there is. Firstly, the audio in line

passes through an anti-alias filter into a set of

seven band passes being fed by a clock

oscillator (CKIN). The band filters range from

values of 63 Hz to 16 KHz; for reference,

Desktop Equalizer inspiration

 MSGEQ7 Schematic

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 128

humans typically hear sound in the 20 Hz to 20

KHz range. The DC voltage output is

determined by which of the inputs to the

multiplexor output are selected, which changes

by toggling the reset pin high then low to reset

to the 63Hz output, and with each pulse of the

strobe pin the DC output is incremented by 1 to

the next highest frequency. Therefore, the

theory behind the use of the MSGEQ7 in this

project is to take in audio from the Adafruit

microphone breakout, and display a bargraph

animation of each respective frequency from 63

Hz to 16 KHz.

DS1307 RTC

I2C Communication timing

The DS1307 RTC is a 8 pin IC intended to keep

the time in a circuit, providing year, month,

week, hour, minute, or second data through an

I2C bus. I2C is the method of two-wire

communication, in which the SCL and SDA

pins are used to communicate data between a

designated device and the microcontroller. This

form of communication is extremely useful, as

over 100 devices can be connected to a microcontroller through only two lines, allowing for a

project to include as many components as necessary. The I2C bus works by the microcontroller

sending an “address” value across the Serial Clock (SCK) line, awaiting for a single component

which possesses that address to respond. Once there, one can send commands over the SCL

lines, and receive the output data from the SDA line. The DS1307 serves the purpose of keeping

the time within the circuit, letting the microcontroller know when a minute has passed, so that

the new time can be displayed. The data arriving through the SDA lines must be parsed into

usable decimal digits, since they arrive as Binary Coded Decimal (BCD). This BCD must be

turned into individual nibbles, so that each nibble represents either a ones digit or tens digit of

the requested time.

MSGEQ7 internal circuitry

RTC Schematic

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 129

RTC Data registers

MAX7219

The MAX7219 is a specialized IC designed to

drive a CC LED matrix, or multiple seven-

segment displays at a single time. This is done

by the current syncing digit pins, which will tie

the CC of either a single digit or row of LED’s

to ground at a time, allowing for a POV effect

to be created. Once a single digit is grounded,

the current sourcing segment pins will light up

whatever necessary segments/LEDs to show the

desired number/animation. The digit and

segment pins are controlled by 3 input pins,

LOAD, CLK and DIN.

If more than 8 rows of LEDs must be lit, than

the DOUT of the first MAX7219 must be

connected to the DIN of the second; multiple

IC’s can be connected together through this

method, allowing for a display consisting of

multiple matrices. In order to limit the current

being synced through the digit pins, a resistor

of value 10 K - 64 K (depending on

maximum LED current) must be placed

between the V+ and ISET pins. In order to

control the 8×14 matrix (8 horizontal rows and 14 vertical columns), 2 MAX7219 IC’s are used

in this project. Since 7 analog read values are stored in the MSGEQ7 array, each bar to display

said value will be of width 2 and height 8, with 8 LED’s lit representing an Analog reading of

around 900-1023. Unforunately the 8×14 matrix does pose some issues for the display of the

time, only allowing numbers of 3 columns width to be displayed, unless the time is scrolled

across the screen.

MAX7219 Pinout

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 130

Procedure
Parts Table

Part Quantity Package Digikey Part #

2.2 K Resistor 2 1206 311-2.2KERCT-ND

200 K Resistor 1 1206 311-200KERCT-ND

64 K Resistor 2 1206 311-60.4KFRCT-ND

10 K Resistor 2 1206 311-10KERCT-ND

0.1 F Capacitor 4 1206 399-C1206C104K5RAC7800CT-ND

0.01 F Capacitor 1 1206 399-7174-1-ND

33 pF Capacitor 1 1206 399-1199-1-ND

10 F Capacitor 2 1206 CAP CER 10UF 10V Y5V 1206

MAX7219 IC 2 24 SOIC MAX7219EWG+TCT-ND

32 KHZ Crystal 1 8 mm × 3.8 mm XC1195CT-ND

Green LED 42 1206 160-1169-1-ND

Amber LED 42 1206 160-2025-1-ND

Red LED 28 1206 160-1167-1-ND

DS1307 1 8 SOIC DS1307ZN+T&RCT-ND

ATtiny84 1 14 SOIC ATTINY84A-SSURCT-ND

USB AB connector 1 H125279CT-ND

CAD

Fusion 360

Open Fusion 360 and create a new sketch

labelled “Spectrum Equalizer Case”. Open the

board DXF file exported from EAGLE, in order

to design around the dimensions of the PCB.

Begin by offsetting the outside dimension of

the PCB by a value of 0.2 mm. Offset the newly

generated line by 1.2 mm, allowing for a thin

enough wall to be printed. Extrude this value

symmetrically in both dimensions (1.2 mm

walls + 0.2 mm offset + 0.8mm for board

thickness). This way, walls 1.2 mm thick can be

extruded to outwards to hold the board in place

within the case. By following the previous

steps, a simple shell to hold the board has been created, but now the case must stand up and

accommodate for the LED diffuser. Extrude a rectangle 30 mm out from the lower part of the

sleeve, and fillet the edges until the case looks aesteticly pleasing (around 5-10 mm). Finally, the

curved legs are created by cutting part of small rectangular extrusions with a cylinder. The LED

diffuser is simply a 1.0 mm thick rectangle designed to slot into the front of the case, and when

printed in clear filament, diffuse the light from the LED’s which allows for a smoother transition

between each light. ‘

Case designed in Fusion 360

https://www.digikey.ca/product-detail/en/yageo/RC1206FR-0760K4L/311-60.4KFRCT-ND/731984

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 131

EAGLE

Open EAGLE and create a new sketch entitled

“SMD_EqualizerV2”. Begin by connecting the

pre-labelled components (ISP header, Micro

AB, etc.) to their respective busses. For

example, connect each pin of the ISP header to

the respective pins of the ATtiny84. Continue

by adding the remaining THT and SMD parts

from their respective libraries. Create an 8×14

LED matrix, in which each of the 14 columns

is connected to the cathode of 8 LED’s, and the

8 rows are connected to the anodes of 14

LED’s. Connect the 2 MAX7219 LED drivers,

feeding the DOUT of the 1st to the DIN of the

second, and adding voltage smoothing

capacitors on the 5V input. Add a 64 KΩ

resistor between the ISET pin and the 5V pin

of each MAX7219. Now connect the

MAX7219’s to the LED’s, remembering the

digit pins sync current and the segment pins

source the current to the matrix. Wire the

MSGEQ7 and RTC circuits, following the

documentation and images in the previous

sections. In order to ease the soldering aspect

of this project, order a stencil along with the

board. As applying solder paste for so many

LED’s can be tedious and cumbersome. Once the board and stencil arrive, use a solder squeegee

to paste all of the necessary pads on the board. Place the components onto the board, using the

silk screening for reference. Finally, place the board into the hodgson reflow oven on the reflow

setting. Upon removing the board, ensure no connections are bridged.

Code
//Project : Surface mount desktop equalizer-RTC circuit, will show equalizer bars,

and show the time every minute

//Author : Josh Dolgin

//Device : Off-board Tiny84

//Date : 20/02/29

//Status : Not Working

//MCU : ATtiny84

//Notes : RTC circuit is conrfirmed to work, Equalizer circuit does not work

#include <TinyWireM.h>

#include <USI_TWI_Master.h>

#include <TinyRTClib.h> //Including necessary I2C libraries for RTC communication

RTC_DS1307 rtc;

DateTime dt = rtc.now(); //Date time structure housing all the necessary values

#include <LedControl.h> //Library to control the max7219

#define NUMDISPLAYS 2

#define DIN PA2

PCB Board

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 132

#define CLK PA3

#define LOAD PA1

LedControl lc = LedControl(DIN, CLK, LOAD, NUMDISPLAYS);

#define AIN PA7

#define STROBE 1<<PB2

#define RESET 1<<PB3

uint8_t spectrumValue[7]; // Holds ADC equalizer values for 7 frequencies

uint8_t colData [] = {0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF}; // How many

LEDs are lit(1-8)

uint8_t numbers[][3] { //numbers three columns wide and 6 rows tall

 {0x7C, 0x44, 0x7C}, //0

 {0x24, 0x7C, 0x04}, //1

 {0x5C, 0x54, 0x74}, //2

 {0x54, 0x54, 0x7C}, //3

 {0x70, 0x10, 0x7C}, //4

 {0x74, 0x54, 0x5C}, //5

 {0x7C, 0x54, 0x5C}, //6

 {0x40, 0x40, 0x7C}, //7

 {0x7C, 0x54, 0x7C}, //8

 {0x70, 0x50, 0x7C}, //9

};

void setup()

{

 rtc.begin();

 rtc.adjust(DateTime(2020, 2, 29, 11, 14)); //Sets the new time

 for (uint8_t i = 0; i < NUMDISPLAYS; i++) {

 lc.shutdown(i, false);

 lc.setIntensity(i, 8);

 lc.clearDisplay(0);// clear screen

 }

 DDRB |= (STROBE | RESET); //Sets strobe and reset for output

 PORTB &= ~RESET;

 PORTB |= STROBE;

}

void getValues() {

 PORTB |= RESET; //Reset high

 PORTB &= ~RESET; //Reset low, resets to the 63Hz equalizer value

 for (uint8_t i = 0; i < 7; i++)

 {

 PORTB &= ~STROBE;

 delayMicroseconds(30); // to allow the output to settle

 spectrumValue[i] = analogRead(AIN);

 PORTB |= STROBE; //Next frequency

 }

}

void displayValues() {

 getValues(); //get Equalizer values

 for (uint8_t i = 0; i < 2; i++) {

 lc.setRow(0, i, colData[(spectrumValue[0] >> 7)]);

 lc.setRow(0, i + 2, colData[(spectrumValue[1] >> 7)]);

 lc.setRow(0, i + 4, colData[(spectrumValue[2] >> 7)]);

 lc.setRow(0, i + 6, colData[(spectrumValue[3] >> 7)]);

 lc.setRow(1, i, colData[(spectrumValue[4] >> 7)]);

 lc.setRow(1, i + 2, colData[(spectrumValue[5] >> 7)]);

 lc.setRow(1, i + 4, colData[(spectrumValue[6] >> 7)]);

 }

}

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 133

void displayTime() {

 uint8_t hourValue = dt.hour();

 uint8_t minuteTens = dt.minute() / 10;

 uint8_t minuteOnes = dt.minute() % 10;

 for(uint8_t i = 0; i<3; i++){

 lc.setRow(0, i, numbers[hourValue][i]);

 lc.setRow(0, i+5, numbers[minuteTens][i]);

 lc.setRow(1, i+1, numbers[minuteOnes][i]);

 } //Unable to display double digit hour values with 8x14 matrix, currently

developing scrolling code

}

void loop()

{

 uint8_t oldMin;

 uint8_t newMin;

 newMin = dt.minute(); //New minute value

 if (newMin == oldMin) {

 displayValues(); //If the minute value has not changed, display equalizer values

 } else {

 displayTime(); //Else display the time (the minute has changed)

 }

 oldMin = dt.minute(); //Old minute value

}

Reference
http://darcy.rsgc.on.ca/ACES/TEI4M/1819/ISPs.html

https://github.com/adafruit/TinyRTCLib

https://github.com/adafruit/TinyWireM

Reflection
In reflection this project was not as successful

as I would have liked it to be, and I am fairly

frustrated with the current outcome. As much as

I enjoy surface mount soldering as a concept, I

felt sort of bored during the entire medium ISP

process. It was practically building a prototype,

sending out 2 PCB’s and waiting. Beyond

designing a case in fusion and implementing

register level code into my original high level

code, there was nothing else to do but sit and

wait for the next iteration of my board to come.

Although my idea was interesting and

subjectively one of the better implemented

designs, I may have reached a little to high on

this one. Overall I found mild success in the

parts of my board that did work individually, and not having to mess with the test clip to

program my V2 board was a bit of a relief. Although my design expertise was not pushed very

far in this project (an hour of fusion?), I am happy to have further progressed towards the center

of the domain triangle, continuing hardware and software development that last year I would

have thought to be impossible. Overall I am happy to have pursued as ambitious a project as I

did, because I gained valuable knowledge about the SMD process that will prove valuable in the

design of my flex PCB.

http://darcy.rsgc.on.ca/ACES/TEI4M/1819/ISPs.html
https://github.com/adafruit/TinyRTCLib
https://github.com/adafruit/TinyWireM

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 134

Media

https://www.youtube.com/watch?v=eeAYpyfAd30

Soldered front of PCB

Soldered back of PCB

PCB encased

PCB displaying random time value

https://www.youtube.com/watch?v=eeAYpyfAd30

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 135

Project 24. Bicolor Byte

Reference
http://darcy.rsgc.on.ca/ACES/TEI4M/1920/Tasks.html - bicolorByte

https://www.microchip.com/mplab/avr-support/atmel-studio-7

https://learn.adafruit.com/usbtinyisp/drivers

Purpose
Well to start off, the purpose of this project is

to re-establish some normalcy to the ACES

classroom and continue developing projects

during these interesting times. Although some

supplies are limited due to a great deal of

delays in the distribution world, ACES

continue to push boundaries. This project is the

first introduction to Atmel Studio 7, an AVR

assembly compiler (assembler) used to program

a great variety of standard microcontrollers.

One huge benefit of using Atmel Studio 7 is the

multiple available viewing windows while in the “debugging” state of the application. These

viewing windows actively show the states of all I/O registers, Data and Storage RAM registers,

and much more to analyze what is functioning in the program.

The immediate purpose of this project is to

reflect a random byte bit by bit on a bicolor

LED, with a green light reflecting a set bit and

red lit representing a cleared bit. Each bit will

be represented for 1 second, and once all bits

have been displayed, there will be a 3 second

pause before restarting the series over again. In

order to accomplish this task, ACES must

become fully acclimated to coding in only AVR

assembly language, rather than just embedding

some assembly into high level instructions.

This means that some further research of AVR

commands beyond simple sbi (set bit in I/O)

register, cbi (clear bit in I/O register), or dec

(decrement) commands must be implemented.

AVR assembly language, although more

complicated in synthax than standard Arduino C and other languages is extremely powerful in

the amount of RAM taken up by individual instructions, as well as the total time to execute a

program.

http://darcy.rsgc.on.ca/ACES/TEI4M/1920/Tasks.html#bicolorByte
https://www.microchip.com/mplab/avr-support/atmel-studio-7
https://learn.adafruit.com/usbtinyisp/drivers

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 136

Code
;PROJECT :Bicolor Byte

;PURPOSE :Display a random byte value bit by bit on a bicolor LED

;AUTHOR :J. Dolgin

;DATE :2020 04 10

;DEVICE :Dolgin Development Platform

;MCU :ATtiny84

;COURSE :ICS4U

;STATUS :Working

;.include "prescalars.inc" ;assembly directive equivalent to compiler

directive #include

.def mask = r16 ;using register 16 to store the mask value

.def byte = r17 ;using register 17 to store the mask value

.equ DDR = DDRA ;typically, we'll need the use of PortA

.equ PORT = PORTA ;both its data direction and output register

; DATA Segment declarations

.dseg ;locate for Data Segment (SRAM) requirements

(default start at 0x0060)

data: .BYTE 1 ;reserve one byte for a variable (the label is the

symbol)

; CODE Segment (default)

.cseg ;locate for Code Segment (FLASH)

; ***** START OF CODE **

.org 0x0100 ;well clear of IVT

reset: ;PC jumps to here (start of code) on reset

interrupt...

setup:

sbi DDR, 0 ;set both bits in the DDR register, to output

sbi DDR, 1 ;

ldi mask, 0x80 ;sets a mask in the most significant bit

loop:

ldi byte, 0xCC ;any random byte to be displayed

and byte, mask ;reflect the state of that respective bit

breq red ;if the result was a zero, show red

rjmp green ;if the bit was set, show green

green:

cbi PORT, 0 ;set and clear respective bits to show green

sbi PORT, 1 ;

ldi r18, 41 ;delay 1s

 ldi r19, 150 ;

 ldi r20, 128 ;

L1: dec r20 ;

 brne L1 ;

 dec r19 ;

 brne L1 ;

 dec r18 ;

 brne L1 ;

 rjmp shift ;

red:

 cbi PORT, 1 ;clear and set respective bits to show red

 sbi PORT, 0 ;

 ldi r18, 41 ;delay 1s

 ldi r19, 150 ;

 ldi r20, 128 ;

L2: dec r20 ;

 brne L2 ;

 dec r19 ;

 brne L2 ;

dec r18 ;

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 137

 brne L2 ;

 rjmp shift ;

shift:

 LSR mask ;shift mask right one

 breq done ;if mask is cleared, go to done

 rjmp loop ;if mask isn’t cleared go back

done:

 cbi PORT, 0 ;turn off LED

 cbi PORT, 1 ;

 ldi r18, 122 ;delay 3s

 ldi r19, 193 ;

 ldi r20, 130 ;

L3: dec r20 ;

 brne L3 ;

 dec r19 ;

 brne L3 ;

 dec r18 ;

 brne L3 ;

 rjmp PC+1 ;

 rjmp setup ;go set up the mask again

Procedure

Download and install Atmel Studio 7 on a

windows computer. Open the previously made

code shell for the ATtiny84, naming the new

project “Bicolor Byte”. Fill in the upper

comments of the code shell, stating the new date,

status, and any other required notes. Download and install the required drivers for the USBTiny

pocket programmer, following the instructions posted on Adafruits website. Under the “external

tools” menu, set up a tool for programming the ATtiny84, using the avrdude.exe file within the

Arduino application. Begin the code by using the sbi command to turn on PA0 and PA1 in the

DDRA register to output. Place a 0x80 in the mask register using the ldi command. Load the

byte to be displayed into a new register entitled data. AND the byte with the mask value,

mirroring the bit in the position designated by the mask. If the resulting byte is equal to 0, the bit

was not set, so use the branch if equal to zero command to display a red light. If the result was

not 0, the bit must be set, so display a green light. Create functions to display either the green or

red LED, followed by a 1 second delay. The only real difference is which bit is set and cleared in

the port register. After the function, use the relative jump command to jump to a new function,

which shifts the mask to the right once. After shifting the mask using the logical shift right

command, check if the result was a 0, meaning that all 8 bits have been displayed already;

branch to the done function, which delays for 3 seconds. If the mask has not been fully shifted,

go to the top and do the whole process again. This is essentially a for loop that runs 8 times, as

the mask moves across each bit position. Finally, in the done command, after pausing for 3

seconds, go all the way to the top and reestablish the mask, beginning the process again.

Parts Table

Component Quantity

DDP 1

Bicolor LED 1

Sparkfun programmer 1

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 138

Media

https://www.youtube.com/watch?v=YnQJfR6WtqY

DDP showing a set bit

DDP showing a cleared bit

Reflection

Upon reflection I believe this was a farily successful first project while on quarantine (I’m sure

there is much more to come). When Mr. D’Arcy contacted me over March Break to install Atmel

Studio 7 on my laptop over the break, I was happy to oblige some of my time to helping better

the instructions my peers would receive over the coming weeks. After some fuss with installing

windows software onto my device, and more time struggling with installing the necessary device

software to upload through the sparkfun pocket programmer, I was off to the races. In our final

class before the break, Mr. D’Arcy said something really interesting which caught my attention;

he told my class that if they were to work in the Arduino IDE, they should use paper to keep

track of data registers. Of course AS7 provides the ability to do this through the debug software,

but the idea that stuck was using paper to plan out ideas. Instead of just starting code at the top,

and building the next line of code based off what came before; I wrote a plan for my code on the

paper, with each function written down with a shell, so I could see what needed to happen for my

code to work properly. Now, my each line was part of a greater complex of both previous

instructions and the ones to come. Overall, I have reached a point where I am comfortable with

setting up conditional instructions with branches, but still have issues with data value

manipulation.

https://www.youtube.com/watch?v=YnQJfR6WtqY

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 139

Project 25. PoV on the ADC Shield
Reference

http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html#PoV

Purpose
The purpose of this project is to display a 2

byte hexadecimal word on the ADC shields 4

seven segment displays, using both shiftout and

POV techniques. Although a project of similar

caliber has already been completed this year

(see Project 21. ADC shield), the previous

iteration is coded in Arduino register-level

code, while this project is coded in AVR

assembly. Although it seems like this project

would be one of the more difficult coding

ventures of the year, if one did the incremental

homework assignments of displaying the

numbers 0-F on a single display, the jump to

this final version is not as difficult.

In this project, persistence of vision is the act of

turning on one digit at a time, shifting out the

value, then turning it off and moving to the next

digit. This is accomplished by grounding the

base pin of a single NPN transistor at a time,

allowing the CC of the seven segment display a

path to ground. Also, this project serves to

further develop knowledge of data storage and

access in the ASM assembly environment. Both

the 2 byte constant and array of shiftout values

are stored in program memory, which are

placed in individual addresses when the code is

uploaded to the microcontroller. The contents of

program memory can be accessed through the

lpm command, which loads the contents of program memory at an address pointed to by the “Z”

registers into a designated general purpose register. Once the 4 nibbles of data to be displayed

are separated, since they can’t be placed in program memory on upload, must be stored to SRAM

instead. To store a piece of data to SRAM, the sts command will store the contents of a

register to a specified SRAM address.

PoV example on the ADC shield

SRAM and program memory space

http://darcy.rsgc.on.ca/ACES/TEI4M/DolginDevPlatform/index.html#PoV

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 140

Code
;PROJECT :Display 4 bit value on ADC shield

;AUTHOR :Josh D

;DATE :2020 05 01

;DEVICE :Dolgin Development Platform

;MCU :ATtiny84

;COURSE :ICS4U

;STATUS :working

;.include "prescalars.inc" ;assembly directive equivalent to compiler directive

#include

.def util = r16 ;general use register

.def storage= r17 ;holds the value to be displayed

.def mask = r18 ;register holding the mask value

.def use = r19 ;general purpose register

.equ DDR = DDRA ;typically, we'll need the use of PortA

.equ PORT = PORTA ;both its DDR and output register

.equ thou = PA1 ;these are the port pins...

.equ hund = PA2 ;connected to the base pins of

.equ tens = PA3 ;each of the transistors that

.equ units = PA4 ;ground the respective displays

.equ DATA = PA5 ;595 data pin

.equ LATCH = PA6 ;595 latch pin

.equ CLK = PA7 ;595 clock pin

.dseg

digits: .byte 4 ;reserve 4 bytes to hold digits

.cseg ;locate for Code Segment (FLASH)

; ***** START OF CODE **

.org 0x0000 ;start of Interrupt Vector Table (IVT)

 rjmp reset ;lowest interrupt address == highest priority!

.org 0x0011 ;well clear of IVT

constart:

.DW 0x8CF5 ;2 byte word holding value

constend:

varStart:

.DB 0xFC, 0x60, 0xDA, 0xF2, 0x66, 0xB6, 0xBE, 0xE0, 0xFE, 0xF6, 0xEE, 0x3E, 0x9C,

0x7A, 0x9E, 0x8E ;shiftout data

varEnd:

.org 0x0100

reset:

 ldi util, 0xFF ;load 255 into utility register

 out DDR, util ;sets all bit in DDRA register for output

 ldi ZL, low(constart<<1) ;loads low byte of Z reg the start of the word

 ldi ZH, high(constart<<1) ;loads high byte of Z reg with the start of word

 lpm util, Z ;loads first byte of the word

 ldi mask, 0x0F ;masks off high nibble

 and util, mask ;and together

 sts digits, util ;store first hexvalue to be displayed

 lpm util, Z+ ;load low byte again, post incrementing Z

 rcall parse ;parse off high nibble

 sts digits+1, util ;store result to second address in SRAM

 lpm util, Z ;load high byte of word

 and util, mask ;mask off high nibble

 sts digits+2, util ;store result to SRAM (3rd value)

 lpm util, Z ;one last time load high word

 rcall parse ;parse off the high nibble

 sts digits+3, util ;store final result to SRAM

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 141

 rjmp main ;jump to main function to display values

parse:

 ldi storage, 0x04 ;runs 4 times

again: lsr util ;shift right

 dec storage ;decrement storage register

 brne again ;if not equal to zero shift again

 ret

main:

 ldi use, 1<<units ;where to start displaying

 ldi mask, 0x80 ;load mask for shiftout function

 lds storage, digits ;load the first digit from SRAM

 rcall execute ;do what you need to

 lds storage, digits+1 ;load the second digit from SRAM

 rcall execute ;do what you need to

 lds storage, digits+2 ;load the third digit from SRAM

 rcall execute ;do what you need to

 lds storage, digits+3 ;load the fourth digit from SRAM

 rcall execute ;do what yout need to

 rjmp main ;go to the main function

execute:

 ldi ZL, low(varStart<<1) ;only need to use the low part of Z reg

 add ZL, storage ;add contents of SRAM to Z reg

 rcall shift ;go shiftout the data

 in storage, PORT ;load the port byte into storage reg

 add storage, use ;add the contents of use mask to storage

 out PORT, storage ;output this back to the PORT reg

 rcall delay ;call the 20ms delay

 sub storage, use ;subtract the mask

 out PORT, storage ;change the port output

 lsr use ;shift right use register

 ret ;

shift:

 cbi PORT, CLK ;clear clock bit to pulse in the next data

 lpm util, Z ;load util the contents of address Z in prog mem

 and util, mask ;and the data with the mask

 breq clearBit ;if the result was 0, clear the data bit

 rjmp setBit ;else set the data bit

clearBit:

 cbi PORT, DATA ;clear the data pin

 rjmp pulse ;pulse the clock pin

setBit:

 sbi PORT, DATA ;set the data pin

 rjmp pulse ;pulse the clock pin

pulse:

 sbi PORT, CLK ;data is shifted in on the rising edge

 LSR mask ;shift the mask right once

 brne shift ;if the mask is not equal to 0, go shift the next

 sbi PORT, LATCH ;set the latch high to display

 cbi PORT, LATCH ;latch low until all 8 bits are loaded

 ldi mask, 0x80 ;reload the mask

 ret ;

delay:

 ldi r21, 53 ;

L1: dec r21 ;

 brne L1 ;

 nop ;

 ret ;

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 142

Procedure

Open Atmel Studio 7 and create a new project

based off the ATtiny84 template previously

created. Add the necessary comments and

descriptions to the document. Begin by defining 4

registers, 3 for general purpose data manipulation

and 1 to house the mask values. Define labels for

each of the respective PORTA values used such

as Clock, Data, Latch, and the digit pins. In the

data segment section, reserve 4 bytes in SRAM to

hold the separated digits of the value. In the code

segment, begin by creating a word constant in

program memory with the .DW command. Create

an array in program memory housing the bytes

necessary to display respective numbers on the

seven segment displays. Begin by setting all bits

in the DDRA to output using the load immediate

and out command. Load the first byte of the word

from program memory using the LPM command. Separate the low nibble using a mask, and the

high nibble by shifting the byte right 4 times. Do the same for the high byte of the word. Save

each of the digits to one of the addresses saved previously in SRAM. In the main function, load

the mask value into the mask register (MSBFIRST). Load the first digit to be displayed from

SRAM into a general purpose register. Add the contents of this register to the low Z register,

which will now point to the necessary byte in the array to show the number. Call the shiftout

command previously written to display the number before turning on the digit, pausing for 20 ms

and turning the digit off again. Move to the next digit and follow the same process as before.

Reflection

There is not a whole lot to say in this reflection that I haven’t said already, I believe that this was

another successful project in AVR Assembly. Although some of my classmates are seeming to

still struggle with the concepts (4 calls today?), I was still happy to provide support despite the

various amounts of resources at their disposal. I have decided that it is better to give hints rather

than direct answers (I mean, I won’t always be here to help right?), which I hope will help my

classmates develop the skills necessary to complete the project themselves; even without

pseudocode. I stayed up to date with the homework and learning what was asked of us by

Mr.D’Arcy, as it is only fair to reciprocate the effort he puts in for each class by extending

myself to understand what he is teaching. I’m sure there is a more compact, less confusing way

to complete the project than I have, but it works for me and I am content with the result.

AVR Instructions

Instruction Syntax

Load immediate Ldi Rd, k

Out Out P, Rr

Load memory Lpm Rd, Z

AND And Rd, Rr

Store to SRAM Sts k, Rr

Relative call Rcall k

Relative jump Rjmp k

Logical shift right Lsr Rd

Decrement Dec Rd

Branch if not equal Brne k

In In Rd, P

Add Add Rd, Rr

Subtract Sub Rd, Rr

Set bit in I/O Sbi P, b

Clear bit in I/O Cbi P, b

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 143

Media

https://www.youtube.com/watch?v=iqntm2WK-sU

https://www.youtube.com/watch?v=iqntm2WK-sU

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 144

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 145

Project 26. Scrolling DER page
Reference
http://darcy.rsgc.on.ca/ACES/TEI4M/1920/ISPs.html - logs

Purpose

The purpose of this project is to develop a mini,

flexible, SMD version of the DES scrolling

message board to paste onto the front page of a

Design & Engineering report, that would scroll

an ACES name across the front page. Since the

PCB will be on the front page of a DER, it will

run off of solar power, so that whenever the

laminated cover is in the sun it will scroll the

information to whomever it is being shown to.

Not only will this be useful and impressive to

future employers, but it will serve as a piece of

nostalgia for the days spent in the DES. Secondly, the project serves to finalize the progress

made in both the Hardware and Software domains of Engineering.

The board is mostly populated with the 64 LED’s in the 88 matrix, but also includes a

MAX7219 LED driver with accompanying current limiting resistor and power regulation

capacitors. The MCU used in the project is the all-too familiar ATtiny84, which for the most part

has been used in every project of the ICS4U school year.

Code

//Project : Scrolling DER message board, will scroll my name across the

front page of my DER

//Author : Josh Dolgin

//Device : SMD ATtiny84

//Date : 20/05/30

//Status : Working

//Notes : Pretty simple code, tried to get EEPROM working so message

length can increase

#include <LedControl.h> //Library for MAX7219

#define NUMDISPLAYS 1 //Number of MAX7219 displays

#define DIN PA2 //DATA pin of MAX

#define CLK PA3 //CLOCK pin of MAX

#define LOAD PA1 //LOAD pin of MAX

#define SHIFTSPEED 20 //How often the display is updated (ms)

#define BRIGHTNESS 4 //Brightness of LED's in matrix

#define DISPLAYSIZE 3 //How many columns wide each letter is

#define MATRIX 8 //Number of Columns

LedControl lc = LedControl(DIN, CLK, LOAD, NUMDISPLAYS); //Sets control for

Max7219

uint8_t toDisplay[MATRIX] {}; //Array that is being displayed

Scrolling message board example

http://darcy.rsgc.on.ca/ACES/TEI4M/1920/ISPs.html#logs

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 146

uint8_t backBuffer[MATRIX] {};//Array that shifts into what is being

displayed

String message; //Message to be displayed

uint8_t pointer = 0; //8 bit pointer to character in message

uint8_t font[60][DISPLAYSIZE] = { //defines each ASCII value

 { 0x00, 0x00, 0x00 }, //space

 { 0x00, 0x6F, 0x6F }, //!

 { 0x06, 0x00, 0x06 }, //"

 { 0x3E, 0x14, 0x3E }, //#

 { 0x5C, 0xD6, 0x74 }, //$

 { 0x12, 0x08, 0x24 }, //%

 { 0x76, 0x4A, 0x36 }, //&

 { 0x00, 0x06, 0x00 }, //'

 { 0x3C, 0x42, 0x00 }, //(

 { 0x42, 0x3C, 0x00 }, //)

 { 0x0A, 0x04, 0x0A }, //*

 { 0x10, 0x38, 0x10 }, //+

 { 0x60, 0x00, 0x00 }, //,

 { 0x10, 0x10, 0x10 }, //-

 { 0x60, 0x60, 0x00 }, //.

 { 0x60, 0x3C, 0x06 }, // /

 { 0x7C, 0x44, 0x7C }, //0

 { 0x68, 0x7C, 0x60 }, //1

 { 0x74, 0x54, 0x5C }, //2

 { 0x54, 0x54, 0x7C }, //3

 { 0x1C, 0x10, 0x7C }, //4

 { 0x5C, 0x54, 0x74 }, //5

 { 0x7C, 0x54, 0x74 }, //6

 { 0x04, 0x04, 0x7C }, //7

 { 0x7C, 0x54, 0x7C }, //8

 { 0x5C, 0x54, 0x7C }, //9

 { 0x6C, 0x6C, 0x00 }, //:

 { 0xB6, 0x76, 0x00 }, //;

 { 0x10, 0x28, 0x44 }, //<

 { 0x48, 0x48, 0x48 }, //=

 { 0x44, 0x28, 0x10 }, //>

 { 0x06, 0x52, 0x0E }, //?

 { 0x7C, 0x44, 0x5C }, //@

 { 0x7E, 0x12, 0x7E }, //A

 { 0x7E, 0X52, 0x6E }, //B

 { 0x3C, 0x42, 0x24 }, //C

 { 0x7E, 0x42, 0x3C }, //D

 { 0x7E, 0x5A, 0x5A }, //E

 { 0x7E, 0x12, 0x02 }, //F

 { 0x7E, 0x42, 0x72 }, //G

 { 0x7E, 0x18, 0x7E }, //H

 { 0x42, 0x7E, 0x42 }, //I

 { 0x60, 0x40, 0x7E }, //J

 { 0x7E, 0x18, 0x66 }, //K

 { 0x7E, 0x40, 0x40 }, //L

 { 0x7C, 0x08, 0x7C }, //M

 { 0x7C, 0x04, 0x7C }, //N

 { 0x3C, 0x42, 0x3C }, //O

 { 0x7E, 0x0A, 0x0E }, //P

 { 0x0E, 0x0A, 0x7C }, //Q

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 147

 { 0x7E, 0x1A, 0x6E }, //R

 { 0x4C, 0x5A, 0x32 }, //S

 { 0x02, 0x7E, 0x02 }, //T

 { 0x7E, 0x40, 0x7E }, //U

 { 0x3E, 0x40, 0x3E }, //V

 { 0x7E, 0x20, 0x7E }, //W

 { 0x66, 0x18, 0x66 }, //X

 { 0x06, 0x78, 0x06 }, //Y

 { 0x72, 0x4A, 0x46 }, //Z

};

void setup() {

 for (uint8_t i = 0; i < NUMDISPLAYS; i++) {

 lc.shutdown(i, false); //Turns on display

 lc.setIntensity(i, BRIGHTNESS);//Sets brightness

 lc.clearDisplay(i); //Clear screen

 }

 message = "JOSH.D RSGC ACES'20 "; //Message that is being displayed

 loadBuffer(message.charAt(pointer)); //Loads buffer with first letter

}

void loadBuffer(uint8_t value) { //Loads ASCII value from string to back

buffer

 value = value - 32; //Subtracts the 32 *null* spaces at the beginning of

ASCII table

 uint8_t util = MATRIX - DISPLAYSIZE; //Utility variable to load top

cells of buffer

 backBuffer[util - 1] = 0; //Loads a 1 column space between characters

 for (uint8_t i = 0; i < DISPLAYSIZE; i++) { //Loads however many columns

of character

 backBuffer[util] |= font[value][i];

 util++; //Increment util to move up a cell in the array

 }

}

void loop() {

 for (uint8_t shifts = 0; shifts < DISPLAYSIZE + 1; shifts++) { //Runs

through an entire letter + 1 space

 for (uint8_t i = 1; i < MATRIX; i++) {

 toDisplay[i - 1] = toDisplay[i]; //Shifts each cell down 1 (cell 0

gets the contents of cell 1)...

 backBuffer[i - 1] = backBuffer[i]; //Shifts each cell down 1

 }

 toDisplay[MATRIX - 1] = backBuffer[0]; //Loads upfront cell of

backBuffer to back cell of display

 backBuffer[MATRIX - 1] = 0; //Loads a 0 to back cell of back buffer

array

 for (uint8_t row = 0; row < MATRIX; row++) {

 lc.setRow(0, row, toDisplay[row]); //Runs through and displays each

row of display

 }

 delay(SHIFTSPEED); //delay before shifting in next cell

 }

 pointer = (pointer + 1) % message.length(); //Increment pointer, pointer

=< message length

 loadBuffer(message.charAt(pointer)); //Load new Char

}

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 148

Procedure

Software

Fill in the necessary comments at the top of the

page regarding the content of the code and

project, including the MCU, author, date, etc.

Include the “LEDcontrol” library, which is used

to control the MAX7219 through a variety of

commands. Define the pins connected to the DIN,

CLOCK, and LOAD pins of the MAX7219 as

constants for the program. Define other constants

that the program will be dependent on, including

the shift speed, size of display, and size of letters. Define 2 arrays, 1 that is the size of the matrix,

and the other to hold the buffer values (usually just 8 cells). Create a font matrix to hold each of

the letters and symbols that could be displayed, in this project due to limited memory, the ASCII

values from space to capital z are used (no lowercase letters).

In the setup function, turn on every display to a certain brightness, and ensure they are cleared.

Write the message to be displayed and load the first letter of the message into the back buffer. In

the “loadBuffer” function, take the ASCII value passed to it and subtract the number 32 so the

value points to the respective symbol in the array (there is 32 null characters before space in

ASCII so space is technically 32). Using this cell in the array, load the empty cells of the array

with the respective row values for the character. In the loop function, create a for loop that

shifts the contents of each cell in the buffer array and display array down by 1, so that cell 0 is

filled with the previous contents of cell 1, cell 1 is filled with the previous contents of cell 2,

etcetera. After performing this shift, display the contents of the array on the LED’s before

shifting again. Once the display has shifted a complete letter + 1 extra space, then a new letter is

loaded into the back buffer.

Hardware

Open EAGLE and create a new schematic.

Drag in the LED matrix made in Project 23.

The SMD Desktop RTC-Equalizer and reduce

the size to an 88 matrix. Connect the DIN,

LOAD, and CLOCK pin of the MAX7219 to

respective I/O pins on the ATtiny84. Connect

the LED matrix’s rows and columns to the digit

and segment pins of the MAX7219 in the exact

fashion as in the SMD RTC-Equalizer project

linked above. Add a 60.4 kΩ SMD resistor

between VCC and the ISET pin of the MAX.

Add 2 power regulating capacitors between the

input voltage and the VCC pin of the

MAX7219. Finally, add the ISP finger

connector and connect the VCC, GND, MISO,

MOSI, RESET, and SCK pins from the finger

to the pins of the same name on the ATtiny84.

Parts Table

Component Quantity

3.6V solar film 1

1206 SMD LED 64

MAX7219 1

ATtiny84 1

60.4 kΩ 1206 resistor 1

10 µF 1206 capacitor 1

0.1 µF 1206 capacitor 1

Solar film cell

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 149

Once the PCB is delivered clean each of the

pads with isopropyl alcohol and lay out the

components on the silicon soldering pad.

Apply small dabs of solder paste to each

component pad and gently place each

component on the pads (in the correct

orientation). Gently swirl the hot air gun in a

little circle above each component until the

paste melts and pulls the component to the pad.

Plug in the ISP finger and confirm that code

uploads to the PCB. Finalize and upload the

code to the PCB, ensuring everything works.

Realize that one of the LED’s was never

connected in EAGLE and solder a wire

connecting it to another LED in the column. Sit

back and marvel in the glorious scrolling message.

Media

https://www.youtube.com/watch?v=H8A76IpIctg

Unsoldered PCB

Soldered PCB

EAGLE view of PCB

https://www.youtube.com/watch?v=H8A76IpIctg

Royal St. George’s College Advanced Computer Engineering School

Computer Information Technology Design Engineering Report

 150

Scrolling message 1

Scrolling message 2

Reflection
Overall, this project was fairly successful from the perspective that I got it to work, which is an

amazing way to finish my ACES career. Although some aspect of it feels like its missing, I

didn’t struggle enough with my project. In the past 26 projects, the ones I feel the most pride in

writing about are the ones that take those long nights in the DES, staring at lines of code or

soldered connections trying to see what one thing doesn’t work. I spent more hours on CHUMP

than I did on the sum of every grade 10 project, and it is because of that I’ll remember the

CHUMP project for years to come. I feel disappointed that this project was too easy, and I wish I

was at school to add more. The concept is cool, and when I decide to execute on the flexible

aspect I’m sure that I will be more content with the product, but as of right now I wish I had a

better send-off.

Here we are, the end. What an amazingly stressful time the past 2 and half years have been. I

remember in grade 10, I was frantically typing away on a Saturday night, praying I could get all

of my ideas in order before the dreaded 11:59 deadline: As my years in the ACES program

continued, I became more involved in the projects due every other weekend, investing in

learning 3D design to encase as many projects as possible, even handing in my DER hours

before the deadline. As I transitioned into grade 12, I had become heavily invested in 3D design,

even doing my short ISP on the new multi-material 3D printer upgrade I had built in the DES. As

the year continued, I found myself more invested in coding and hardware, offering to help grade

11s with their coding problems just out of sheer interest for finding a solution.

I remember grinning ear to ear as I went through my toolbox the day they were handed out, and I

still get that look as I tear through old electronics, pointing out components and their function. I

plan to use the MAX7219 module consisting of 4 matrices this summer to code my own mini

version of the DES scrolling message board, so I can prop it on my desk wherever I end up to

reminisce of where I began. I would like to extend my gratitude to my parents, for affording me

this opportunity, spending hours reading through my reports out of interest and commenting on

my projects. Thank you to Mr. D’Arcy, for providing such a memorable and enjoyable

experience, and teaching me that it is through struggle that we find the most valuable solutions.

Finally, thank you to the reader for taking interest in who I am and what I do; this is my passion,

and I couldn’t be prouder of who I became over the past 2 and a half years in the DES.

	Project 1. Voltage Dividers
	Reference
	Theory
	Procedure
	Media
	Conclusion

	Project 2. Analog Oscillator
	Reference
	Theory
	Procedure
	Purpose
	Media
	Conclusion

	Project 3. The 3D Christmas Tree
	Reference
	Purpose
	Procedure
	Media
	Conclusion

	Project 4. A Counting Circuit
	Theory
	A. Analog Input
	Purpose

	B. NAND Gate Oscillator (4011)
	Purpose

	C. Decade counter (4017)
	D. Decimal Counting Binary Up/Down Counter (4510)
	Purpose

	E. Binary Counting Decimal Counter (4511)
	Purpose

	F. Seven-Segment Display
	Purpose

	Media
	Conclusion

	Project 5. LED Cylinder
	Theory
	Procedure
	Media
	Conclusion

	ICS3U
	Project 6. Traffic Light Assembly and Testing
	Reference
	Purpose
	Procedure
	Code
	Media
	Reflection

	Project 7. ASCII & Buttons
	Reference
	Theory
	Media
	Code
	Procedure
	Reflection

	Project 8. Shift Register – Bargraph
	Reference
	Purpose
	Procedure
	Media
	Code
	Reflection

	Project 9. MatrixMadeEZ
	Reference
	Purpose
	Procedure
	Media
	Code
	Reflection

	Project 10. Design Sessions
	Reference
	EAGLE
	Purpose
	Procedure
	Reflection
	Media

	ViaCAD
	Purpose
	Procedure
	Media
	Reflection

	Project 11. Smart Trash Can
	Reference
	Purpose
	Code
	CAD
	Media
	Procedure
	Reflection

	Project 12. The ACES Rover Project
	Reference
	Purpose
	Procedure
	Design
	Hardware
	Software

	Code
	Media
	Reflection

	Project 13. Legacy PCB/Appliance: ATtiny Arduino
	Reference
	Inspiration
	Procedure
	Procedure Phase 2
	Reflection
	Reflection Phase 2
	Media

	Project 14. ACES Choice: Matrix Equalizer Stick
	Reference
	Purpose
	Procedure
	Reflection
	Code
	Media

	Project 15. The Bi-wheeled Rover
	Reference
	Purpose
	Procedure
	Hardware
	Software
	CAD

	Code
	Media
	Reflection

	ICS4U
	Project 16. The GB machine
	Reference
	Purpose
	Procedure
	Media
	Reflection

	Project 17. 3D Printing and Forming
	Reference
	Purpose
	Prusa MK3s MMU2s
	Procedure
	Media

	Mayku Formbox
	Procedure
	Media

	Reflection

	Project 18. CharlieStick
	Part 1
	Reference
	Purpose
	Procedure
	Media
	Code
	Reflection

	Project 19. CHUMP
	Part 1: Code
	Reference
	Code
	Explanation

	Part 2: Clock
	Reference
	Purpose
	Monostable
	Astable
	Bistable
	Clock Logic

	Procedure
	Reflection
	Media

	Part 3: Arithmetic and Logic Unit
	Reference
	Purpose
	Arithmetic
	Logic

	Procedure
	Reflection
	Media

	Part 4: EEPROM
	Reference
	Purpose
	Procedure
	Code
	Reflection
	Media

	Part 5: Program Counter
	Reference
	Purpose
	Procedure
	Media
	Reflection

	Part 6: Processor
	Reference
	Purpose
	Multiplexor
	ALU
	RAM
	Address register
	Program/Control EEPROM
	Accumulator
	Program Counter

	Procedure
	Reflection
	Media

	Project 20. Dolgin Development Platform
	Part 1: Assembly
	Reference
	Purpose
	Procedure
	Media
	Reflection

	Part 2: Testing
	Reference
	Purpose
	Reflection
	Procedure
	Code
	Media

	Project 21. ADC shield
	Reference
	Purpose
	Procedure
	Code
	Reflection
	Media

	Project 22. Intersection Shield
	Purpose
	Theory
	4511 seven-segment driver
	Intersection shield

	Procedure
	Reference
	Code
	Reflection
	Media

	Project 23. The SMD Desktop RTC-Equalizer
	Purpose
	Theory
	MSGEQ7
	DS1307 RTC
	MAX7219

	Procedure
	CAD
	Fusion 360
	EAGLE

	Code

	Reference
	Reflection
	Media

	Project 24. Bicolor Byte
	Reference
	Purpose
	Code
	Procedure
	Media
	Reflection

	Project 25. PoV on the ADC Shield
	Reference
	Purpose
	Code
	Procedure
	Reflection
	Media

	Project 26. Scrolling DER page
	Reference
	Purpose
	Code
	Procedure
	Software
	Hardware

	Media
	Reflection

